On the structure and clique-width of ( 4 K 1 , C 4 , C 6 , C 7 )-free graphs

被引:1
|
作者
Penev, Irena [1 ]
机构
[1] Charles Univ IUUK, Comp Sci Inst, Malostranske 25, Prague 11800, Czech Republic
关键词
clique-width; even-hole-free graphs; graph algorithms; graph coloring; graph structure; HOLE-FREE GRAPHS; DECOMPOSITION; CUTSETS;
D O I
10.1002/jgt.22749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete structural description of ( 4 K 1 , C 4 , C 6 , C 7 )-free graphs that do not contain a simplicial vertex, and we prove that such graphs have bounded clique-width. Together with the results of Foley et al., this implies that ( 4 K 1 , C 4 , C 6 )-free graphs that do not contain a simplicial vertex have bounded clique-width. Consequently, Graph Coloring can be solved in polynomial time for ( 4 K 1 , C 4 , C 6 )-free graphs, that is, for even-hole-free graphs of stability number at most three.
引用
收藏
页码:435 / 460
页数:26
相关论文
共 50 条
  • [31] Edge Clique Partition of K4-Free and Planar Graphs
    Fleischer, Rudolf
    Wu, Xiaotian
    COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS, 2011, 7033 : 84 - 95
  • [32] The class of (P7,C4,C5)-free graphs: Decomposition, algorithms, and χ-boundedness
    Cameron, Kathie
    Huang, Shenwei
    Penev, Irena
    Sivaraman, Vaidy
    JOURNAL OF GRAPH THEORY, 2020, 93 (04) : 503 - 552
  • [33] SUPERCONDUCTIVITY OF LAYERED COMPOUNDS C6K AND C4K
    AVDEEV, VV
    ZHARIKOV, OV
    NALIMOVA, VA
    PALNICHENKO, AV
    SEMENENKO, KN
    JETP LETTERS, 1986, 43 (08) : 484 - 487
  • [34] RECOGNITION OF C4-FREE AND 1/2-HYPERBOLIC GRAPHS
    Coudert, David
    Ducoffe, Guillaume
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1601 - 1617
  • [35] THE CHROMATIC NUMBER OF (P6, C4, diamond)-FREE GRAPHS
    Lan, Kaiyang
    Zhou, Yidong
    Liu, Feng
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 108 (01) : 1 - 10
  • [36] STRUCTURE OF C4H7+
    LEVI, BA
    BLUROCK, ES
    HEHRE, WJ
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1979, 101 (19) : 5537 - 5539
  • [37] Making a C6-free graph C4-free and bipartite
    Gyori, Ervin
    Kensell, Scott
    Tompkins, Casey
    DISCRETE APPLIED MATHEMATICS, 2016, 209 : 133 - 136
  • [38] Upper bounds on the average eccentricity of K3-free and C4-free graphs
    Dankelmann, P.
    Osaye, F. J.
    Mukwembi, S.
    Rodrigues, B. G.
    DISCRETE APPLIED MATHEMATICS, 2019, 270 : 106 - 114
  • [39] Graphs in which each C4 spans K4
    Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
    不详
    不详
    不详
    不详
    Discrete Math, 1-3 (263-268):
  • [40] Graphs in which each C-4 spans K-4
    Erdos, P
    Gyarfas, A
    Luczak, T
    DISCRETE MATHEMATICS, 1996, 154 (1-3) : 263 - 268