Making a C6-free graph C4-free and bipartite

被引:1
|
作者
Gyori, Ervin [1 ,2 ]
Kensell, Scott [2 ]
Tompkins, Casey [2 ]
机构
[1] Hungarian Acad Sci, MTA Renyi Inst, Budapest, Hungary
[2] Cent European Univ, Dept Math, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Graph theory; Extremal graphs; Bipartite subgraphs; 6-cycles; 4-cycles;
D O I
10.1016/j.dam.2015.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every C-6-free graph G has a C-4-free, bipartite subgraph with at least 3e(G)/8 edges. Our proof is probabilistic and uses a theorem of Furedi et al. (2006) on C-6-free graphs. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 136
页数:4
相关论文
共 50 条
  • [1] C4-free edge ideals
    Nevo, Eran
    Peeva, Irena
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (02) : 243 - 248
  • [2] C4-free edge ideals
    Eran Nevo
    Irena Peeva
    Journal of Algebraic Combinatorics, 2013, 37 : 243 - 248
  • [3] Extremal C4-Free/C5-Free Planar Graphs
    Dowden, Chris
    JOURNAL OF GRAPH THEORY, 2016, 83 (03) : 213 - 230
  • [4] The Final Size of the C4-Free Process
    Picollelli, Michael E.
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (06): : 939 - 955
  • [5] Large cliques in C4-free graphs
    Gyárfás, A
    Hubenko, A
    Solymosi, J
    COMBINATORICA, 2002, 22 (02) : 269 - 274
  • [6] Cliques in the Union of C4-Free Graphs
    Othman, Abeer
    Berger, Eli
    GRAPHS AND COMBINATORICS, 2018, 34 (04) : 607 - 612
  • [7] Subdivisions of a large clique in C6-free graphs
    Balogh, Jozsef
    Liu, Hong
    Sharifzadeh, Maryam
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 112 : 18 - 35
  • [8] Universality vs Genericity and C4-free graphs
    Panagiotopoulos, Aristotelis
    Tent, Katrin
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 106
  • [9] Making a K4-free graph bipartite
    Sudakov, Benny
    COMBINATORICA, 2007, 27 (04) : 509 - 518
  • [10] An upper bound on the radius of a 3-edge-connected C4-free graph
    Fundikwa, Blessings T.
    Mazorodze, Jaya P.
    Mukwembi, Simon
    AFRIKA MATEMATIKA, 2021, 32 (3-4) : 467 - 474