Making a C6-free graph C4-free and bipartite

被引:1
|
作者
Gyori, Ervin [1 ,2 ]
Kensell, Scott [2 ]
Tompkins, Casey [2 ]
机构
[1] Hungarian Acad Sci, MTA Renyi Inst, Budapest, Hungary
[2] Cent European Univ, Dept Math, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Graph theory; Extremal graphs; Bipartite subgraphs; 6-cycles; 4-cycles;
D O I
10.1016/j.dam.2015.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every C-6-free graph G has a C-4-free, bipartite subgraph with at least 3e(G)/8 edges. Our proof is probabilistic and uses a theorem of Furedi et al. (2006) on C-6-free graphs. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 136
页数:4
相关论文
共 50 条