Energy and economic assessment of a hybrid solar/gas heating system using a combined statistical-based multi-objective optimization method

被引:8
|
作者
Sarmouk, M. D. [1 ,3 ]
Smaili, A. [1 ]
Fellouah, H. [2 ]
Merabtine, A. [3 ]
机构
[1] Ecole Natl Polytech, Lab Genie Mecan & Dev, El Harrach 16200, Algeria
[2] Univ Sherbrooke, Dept Mech Engn, Sherbrooke, PQ J1K 2R1, Canada
[3] EPF Sch Engn, 2 Rue Fernand Sastre, F-10430 Rosieres Pres Troyes, France
来源
关键词
Hybrid solar/gas heating system; Control strategy; Multi-objective optimization; Design of experiments; TRNSYS; Pareto fronts; Decision making; LIFE-CYCLE COST; THERMOECONOMIC OPTIMIZATION; THERMAL COLLECTORS; OPTIMAL-DESIGN; PUMP; PERFORMANCE; EXERGY; PV;
D O I
10.1016/j.jobe.2022.105095
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The hybrid solar/gas heating systems are considered as promising technologies to reduce energy consumption and ecological impact, for a more sustainable environment. However, the complexity related to the process of hybridization often calls for multi-objective optimization problems to deal with the constraining objectives. In this paper, a multi-objective optimization methodology combining genetic algorithm, design of experiments and dynamic simulations is proposed. The present work is carried out to maximize the primary energy saving ratio (PESR), solar fraction (SF) and to minimize the levelized cost of heat of a hybrid solar/gas heating system intended for an office building located in Algiers, Algeria. The performance analysis of three control strategy modes showed how important the control strategies can improve the SF and the PESR. The suggested control mode demonstrated a seasonal SF and PESR of 40.31% and 31.32%, respectively. The proposed multi-objective optimization approach gave a better comprehensive energy and economic performance by identifying the pareto fronts. The Linear Programming Technique for Multidimensional Analysis of Preference decision-making technique was employed to determine the best optimal solution. The optimized system exhibited SF of 72.65%, PESR of 42.07% and the Levelized Cost of Heat of 0.054 $/kWh as per the design parameters, collector area of 10 m2, tank volume of 1.7 m(3) and a flow rate of 0.2 kg s(-1). Overall, the results showed that the proposed methodology is time-efficient and can be applied to optimize hybrid solar/gas systems.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Multi-Objective Configuration Optimization of a Hybrid Energy Storage System
    Cheng, Shan
    Sun, Wei-Bin
    Liu, Wen-Li
    APPLIED SCIENCES-BASEL, 2017, 7 (02):
  • [32] Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy
    Alirahmi, Seyed Mojtaba
    Dabbagh, Sajjad Rahmani
    Ahmadi, Pouria
    Wongwises, Somchai
    ENERGY CONVERSION AND MANAGEMENT, 2020, 205
  • [33] Multi-objective optimization of a hybrid energy system integrated with solar-wind-PEMFC and energy storage
    Zhu, Xiaoyu
    Gui, Peipei
    Zhang, Xingxing
    Han, Zhijiang
    Li, Yu
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [34] Multi-objective optimization of a solar hybrid CCHP system based on different operation modes
    Song, Zhihui
    Liu, Tao
    Lin, Qizhao
    ENERGY, 2020, 206
  • [35] Performance assessment of combined cooling, heating and power system operation strategy based on multi-objective seagull optimization algorithm
    Li, Ling-Ling
    Zheng, Sheng-Jie
    Tseng, Ming-Lang
    Liu, Yu-Wei
    ENERGY CONVERSION AND MANAGEMENT, 2021, 244
  • [36] Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system
    Yao, Erren
    Wang, Huanran
    Wang, Ligang
    Xi, Guang
    Marechal, Francois
    ENERGY CONVERSION AND MANAGEMENT, 2017, 138 : 199 - 209
  • [37] Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power
    Feng Zhao
    Chenghui Zhang
    Bo Sun
    IEEE/CAAJournalofAutomaticaSinica, 2016, 3 (04) : 385 - 393
  • [38] Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power
    Zhao, Feng
    Zhang, Chenghui
    Sun, Bo
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2016, 3 (04) : 385 - 393
  • [39] Multi-objective optimization of combined cooling, heating, and power (CCHP) system based on CNG engine
    Sheykhi, Mohammad
    Mehregan, Mahmood
    Emamian, Amin
    Ghorbani, Saeed
    Aliakbari, Karim
    Delouei, Amin Amiri
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 61
  • [40] Multi-objective optimization of hybrid energy storage and assessment indices in microgrid
    Tan, Xingguo, 2014, Automation of Electric Power Systems Press