Energy and economic assessment of a hybrid solar/gas heating system using a combined statistical-based multi-objective optimization method

被引:8
|
作者
Sarmouk, M. D. [1 ,3 ]
Smaili, A. [1 ]
Fellouah, H. [2 ]
Merabtine, A. [3 ]
机构
[1] Ecole Natl Polytech, Lab Genie Mecan & Dev, El Harrach 16200, Algeria
[2] Univ Sherbrooke, Dept Mech Engn, Sherbrooke, PQ J1K 2R1, Canada
[3] EPF Sch Engn, 2 Rue Fernand Sastre, F-10430 Rosieres Pres Troyes, France
来源
关键词
Hybrid solar/gas heating system; Control strategy; Multi-objective optimization; Design of experiments; TRNSYS; Pareto fronts; Decision making; LIFE-CYCLE COST; THERMOECONOMIC OPTIMIZATION; THERMAL COLLECTORS; OPTIMAL-DESIGN; PUMP; PERFORMANCE; EXERGY; PV;
D O I
10.1016/j.jobe.2022.105095
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The hybrid solar/gas heating systems are considered as promising technologies to reduce energy consumption and ecological impact, for a more sustainable environment. However, the complexity related to the process of hybridization often calls for multi-objective optimization problems to deal with the constraining objectives. In this paper, a multi-objective optimization methodology combining genetic algorithm, design of experiments and dynamic simulations is proposed. The present work is carried out to maximize the primary energy saving ratio (PESR), solar fraction (SF) and to minimize the levelized cost of heat of a hybrid solar/gas heating system intended for an office building located in Algiers, Algeria. The performance analysis of three control strategy modes showed how important the control strategies can improve the SF and the PESR. The suggested control mode demonstrated a seasonal SF and PESR of 40.31% and 31.32%, respectively. The proposed multi-objective optimization approach gave a better comprehensive energy and economic performance by identifying the pareto fronts. The Linear Programming Technique for Multidimensional Analysis of Preference decision-making technique was employed to determine the best optimal solution. The optimized system exhibited SF of 72.65%, PESR of 42.07% and the Levelized Cost of Heat of 0.054 $/kWh as per the design parameters, collector area of 10 m2, tank volume of 1.7 m(3) and a flow rate of 0.2 kg s(-1). Overall, the results showed that the proposed methodology is time-efficient and can be applied to optimize hybrid solar/gas systems.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Multi-objective sustainability optimization of a solar-based integrated energy system
    Han, Zepeng
    Han, Wei
    Ye, Yiyin
    Sui, Jun
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 202
  • [22] Multi-objective optimization of a novel solar-based multigeneration energy system
    Ahmadi, Pouria
    Dincer, Ibrahim
    Rosen, Marc A.
    SOLAR ENERGY, 2014, 108 : 576 - 591
  • [23] Multi-Objective Optimization of a Solar-Assisted Combined Cooling, Heating and Power Generation System Using the Greywolf Optimizer
    Ukaegbu, Uchechi
    Tartibu, Lagouge
    Lim, C. W.
    ALGORITHMS, 2023, 16 (10)
  • [24] Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm
    Ko, Myeong Jin
    Kim, Yong Shik
    Chung, Min Hee
    Jeon, Hung Chan
    ENERGIES, 2015, 8 (04): : 2924 - 2949
  • [25] Optimization and performance assessment of solar-assisted combined cooling, heating and power system systems: Multi-objective gradient-based optimizer
    Li, Ling-Ling
    Qu, Li-Nan
    Tseng, Ming-Lang
    Lim, Ming K.
    Ren, Xin-Yu
    Miao, Yan
    ENERGY, 2024, 289
  • [26] Multi-Objective Optimization of Energy Management Strategy on Hybrid Energy Storage System Based on Radau Pseudospectral Method
    Liu, Yanwei
    Li, Zhenye
    Lin, Ziyue
    Zhao, Kegang
    Zhu, Yunxue
    IEEE ACCESS, 2019, 7 : 112483 - 112493
  • [27] Multi-objective optimization design and operation strategy analysis of a solar combined cooling heating and power system
    Jing, Youyin
    Bai, He
    Zhang, Jianliang
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2012, 32 (20): : 82 - 87
  • [28] Multi-response optimization of a hybrid solar gas heating system based on the response surface method
    Sarmouk, Mohammed
    Merabtine, Abdelatif
    Fellouah, Hachimi
    Smaili, Arezki
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 556 - 563
  • [29] Multi-objective assessment, optimization and application of a grid-connected combined cooling, heating and power system with compressed air energy storage and hybrid refrigeration
    Jiang, Runhua
    Yin, Huibin
    Chen, Baiman
    Xu, Yongjun
    Yang, Minlin
    Yang, Xiaoxi
    ENERGY CONVERSION AND MANAGEMENT, 2018, 174 : 453 - 464
  • [30] Performance evaluation of solar hybrid combined cooling, heating and power systems: A multi-objective arithmetic optimization algorithm
    Li, Ling-Ling
    Ren, Xin-Yu
    Tseng, Ming-Lang
    Wu, Ding-Shan
    Lim, Ming K.
    ENERGY CONVERSION AND MANAGEMENT, 2022, 258