A Fuzzy Trust Enhanced Collaborative Filtering for Effective Context-Aware Recommender Systems

被引:11
|
作者
Linda, Sonal [1 ]
Bharadwaj, Kamal K. [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Comp & Syst Sci, New Delhi, India
关键词
Recommender systems; Context-aware recommender systems; Context-aware collaborative filtering; Fuzzy trust; Fuzzy trust propagation; WEB;
D O I
10.1007/978-3-319-30927-9_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Recommender systems (RSs) are well-established techniques for providing personalized recommendations to users by successfully handling information overload due to unprecedented growth of the web. Context-aware RSs (CARSs) have proved to be reliable for providing more relevant and accurate predictions by incorporating contextual situations of the user. Although, collaborative filtering (CF) is the widely used and most successful technique for CARSs but it suffers from sparsity problem. In this paper, we attempt toward introducing fuzzy trust into CARSs to address the problem of sparsity while maintaining the quality of recommendations. Our contribution is twofold. Firstly, we exploit fuzzy trust among users through fuzzy computational model of trust and incorporate it into context-aware CF (CACF) technique for better recommendations. Secondly, we use fuzzy trust propagation for alleviating sparsity problem to further improve recommendations quality. The experimental results on two real world datasets clearly demonstrate the effectiveness of our proposed schemes.
引用
收藏
页码:227 / 237
页数:11
相关论文
共 50 条
  • [41] Domain of Application in Context-Aware Recommender Systems: A Review
    Haruna, Khalid
    Ismail, Maizatul Akmar
    Shuhidan, Shuhaida Mohamed
    PROCEEDINGS OF KNOWLEDGE MANAGEMENT INTERNATIONAL CONFERENCE (KMICE) 2016, 2016, : 223 - 228
  • [42] A systematic review of scholar context-aware recommender systems
    Champiri, Zohreh Dehghani
    Shahamiri, Seyed Reza
    Salim, Siti Salwah Binti
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (03) : 1743 - 1758
  • [43] Generating Synthetic Data for Context-Aware Recommender Systems
    Pasinato, Marden
    Mello, Carlos Eduardo
    Aufaure, Marie-Aude
    Zimbrao, Geraldo
    2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 563 - 567
  • [44] Are We Losing Interest in Context-Aware Recommender Systems?
    Rook, Laurens
    Zanker, Markus
    Jannach, Dietmar
    ADJUNCT PROCEEDINGS OF THE 32ND ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2024, 2024, : 229 - 230
  • [45] Context-Aware recommender systems in mobile application domains
    Wörndl, Wolfgang
    Bader, Roland
    Schlichter, Johann
    i-com, 2011, 10 (01) : 26 - 33
  • [46] Evolving context-aware recommender systems with users in mind
    Livne, Amit
    Tov, Eliad Shem
    Solomon, Adir
    Elyasaf, Achiya
    Shapira, Bracha
    Rokach, Lior
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 189
  • [47] Context-aware recommender systems and cultural heritage: a survey
    Mario Casillo
    Francesco Colace
    Dajana Conte
    Marco Lombardi
    Domenico Santaniello
    Carmine Valentino
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 3109 - 3127
  • [48] CARS: Workshop on Context-Aware Recommender Systems 2022
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Ricci, Francesco
    Tuzhilin, Alexander
    Unger, Moshe
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 691 - 693
  • [49] Special Issue on Context-aware Mobile Recommender Systems
    Colombo-Mendoza, Luis Omar
    Valencia-Garcia, Rafael
    Alor-Hernandez, Giner
    Bellavista, Paolo
    PERVASIVE AND MOBILE COMPUTING, 2017, 38 : 444 - 445
  • [50] User Modeling Framework for Context-Aware Recommender Systems
    Inzunza, Sergio
    Juarez-Ramirez, Reyes
    Jimenez, Samantha
    RECENT ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, 2017, 569 : 899 - 908