A Fuzzy Trust Enhanced Collaborative Filtering for Effective Context-Aware Recommender Systems

被引:11
|
作者
Linda, Sonal [1 ]
Bharadwaj, Kamal K. [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Comp & Syst Sci, New Delhi, India
关键词
Recommender systems; Context-aware recommender systems; Context-aware collaborative filtering; Fuzzy trust; Fuzzy trust propagation; WEB;
D O I
10.1007/978-3-319-30927-9_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Recommender systems (RSs) are well-established techniques for providing personalized recommendations to users by successfully handling information overload due to unprecedented growth of the web. Context-aware RSs (CARSs) have proved to be reliable for providing more relevant and accurate predictions by incorporating contextual situations of the user. Although, collaborative filtering (CF) is the widely used and most successful technique for CARSs but it suffers from sparsity problem. In this paper, we attempt toward introducing fuzzy trust into CARSs to address the problem of sparsity while maintaining the quality of recommendations. Our contribution is twofold. Firstly, we exploit fuzzy trust among users through fuzzy computational model of trust and incorporate it into context-aware CF (CACF) technique for better recommendations. Secondly, we use fuzzy trust propagation for alleviating sparsity problem to further improve recommendations quality. The experimental results on two real world datasets clearly demonstrate the effectiveness of our proposed schemes.
引用
收藏
页码:227 / 237
页数:11
相关论文
共 50 条
  • [31] Improving Context-Aware Music Recommender Systems: Beyond the Pre-filtering Approach
    Pichl, Martin
    Zangelere, Eva
    Specht, Guenther
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 206 - 213
  • [32] A Context-aware Collaborative Filtering Approach for Service Recommendation
    Hu, Rong
    Dou, Wanchun
    Liu, Jianxun
    2012 INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICE COMPUTING (CSC), 2012, : 148 - 155
  • [33] Graph-based context-aware collaborative filtering
    Tu Minh Phuong
    Do Thi Lien
    Nguyen Duy Phuong
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 126 : 9 - 19
  • [34] Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation
    Ouyang, Yi
    Wu, Peng
    Pan, Li
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1595 - 1604
  • [35] Time-Aware Collaborative Filtering for Recommender Systems
    Wei, Suyun
    Ye, Ning
    Zhang, Qianqian
    PATTERN RECOGNITION, 2012, 321 : 663 - 670
  • [37] Collective Embedding for Neural Context-Aware Recommender Systems
    da Costa, Felipe Soares
    Dolog, Peter
    RECSYS 2019: 13TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2019, : 201 - 209
  • [38] Workshop on Context-Aware Recommender Systems (CARS) 2024
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Tuzhilin, Alexander
    Unger, Moshe
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 1219 - 1221
  • [39] CARS: Workshop on Context-Aware Recommender Systems 2023
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Tuzhilin, Alexander
    Unger, Moshe
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 1234 - 1236
  • [40] Preface to the special issue on context-aware recommender systems
    Adomavicius, Gediminas
    Jannach, Dietmar
    USER MODELING AND USER-ADAPTED INTERACTION, 2014, 24 (1-2) : 1 - 5