Generalized commutators of multilinear Calderon-Zygmund type operators

被引:6
|
作者
Xue, Qingying [1 ]
Yan, Jingquan [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anshan, Anhui, Peoples R China
关键词
multilinear Calderon-Zygmund operators; Commutators; Multiple weights; WEIGHTED NORM INEQUALITIES; SINGULAR-INTEGRALS; ITERATED COMMUTATORS; EXTRAPOLATION; BOUNDS;
D O I
10.2969/jmsj/06831161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be an m-linear Calderon-Zygmund operator with kernel K and T* be the maximal operator of T. Let S be a finite subset of Z(+) x {1,...,m} and denote d (y) over right arrow = dy(1) ... dy(m). Define the commutator T-(b) over right arrow ,T-S, of T, and T-(b) over right arrow ,T-S* of T* by T-(b) over right arrow ,T-S ((f) over right arrow)(x) = integral(Rnm) Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(i))).K(x, y(1), ..., y(m))Pi(m)(j=1) f(j)(y(j))d (y) over right arrow and T-(b) over right arrow ,T-S* ((f) over right arrow)(x) = sup(delta>0) vertical bar integral(Sigma j=1m) vertical bar x-y(j)vertical bar(2) > delta(2) . Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(j)))K(x, y(1), ..., y(m)) Pi(m)(j=1) f(j) (y(j))d (y) over right arrow vertical bar. These commutators are reflexible enough to generalize several kinds of commutators which already existed. We obtain the weighted strong and endpoint estimates for T-(b) over right arrow ,T-S and T-(b) over right arrow ,T-S* with multiple weights. These results are based on an estimate of the Fefferman-Stein sharp maximal function of the commutators, which is proved in a pretty much more organized way than some known proofs. Similar results for the commutators of vector-valued multilinear Calderon-Zygmund operators are also given.
引用
收藏
页码:1161 / 1188
页数:28
相关论文
共 50 条
  • [41] Bilinear Θ-type Calderon-Zygmund operators and their commutators on product generalized fractional mixed Morrey spaces
    Lu, Guanghui
    Tao, Shuangping
    Wang, Miaomiao
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (06) : 1988 - 2005
  • [42] A note on commutators of strongly singular Calderon-Zygmund operators
    Zhang, Pu
    Zhu, Xiaomeng
    OPEN MATHEMATICS, 2022, 20 (01): : 1057 - 1065
  • [43] Weighted norm inequalities for multilinear Calderon-Zygmund operators in generalized Morrey spaces
    Wang, Panwang
    Liu, Zongguang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [44] Multilinear Calderon-Zygmund operators on weighted Hardy spaces
    Li, Wenjuan
    Xue, Qingying
    Yabuta, Kozo
    STUDIA MATHEMATICA, 2010, 199 (01) : 1 - 16
  • [45] Calderon-Zygmund operators and their commutators on generalized weighted Orlicz-Morrey spaces
    Deringoz, F.
    Guliyev, V. S.
    Omarova, M. N.
    Ragusa, M. A.
    BULLETIN OF MATHEMATICAL SCIENCES, 2023, 13 (01)
  • [46] On multilinear singular integrals of Calderon-Zygmund type
    Grafakos, L
    Torres, RH
    PUBLICACIONS MATEMATIQUES, 2002, : 57 - 91
  • [47] Weighted Norm Inequalities for Calderon-Zygmund Operators of f-Type and Their Commutators
    Hang, Li
    Zhou, Jiang
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2023, 58 (03): : 152 - 166
  • [48] Multilinear Calderon-Zygmund theory
    Grafakos, L
    Torres, RH
    ADVANCES IN MATHEMATICS, 2002, 165 (01) : 124 - 164
  • [49] A Weighted Endpoint Weak-Type Estimate for Multilinear Calderon-Zygmund Operators
    Stockdale, Cody B.
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (02)
  • [50] Weak and strong type estimates for multilinear Calderon-Zygmund operators on differential forms
    Li, Xuexin
    Xing, Yuming
    Niu, Jinling
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)