Generalized commutators of multilinear Calderon-Zygmund type operators

被引:6
|
作者
Xue, Qingying [1 ]
Yan, Jingquan [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anshan, Anhui, Peoples R China
关键词
multilinear Calderon-Zygmund operators; Commutators; Multiple weights; WEIGHTED NORM INEQUALITIES; SINGULAR-INTEGRALS; ITERATED COMMUTATORS; EXTRAPOLATION; BOUNDS;
D O I
10.2969/jmsj/06831161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be an m-linear Calderon-Zygmund operator with kernel K and T* be the maximal operator of T. Let S be a finite subset of Z(+) x {1,...,m} and denote d (y) over right arrow = dy(1) ... dy(m). Define the commutator T-(b) over right arrow ,T-S, of T, and T-(b) over right arrow ,T-S* of T* by T-(b) over right arrow ,T-S ((f) over right arrow)(x) = integral(Rnm) Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(i))).K(x, y(1), ..., y(m))Pi(m)(j=1) f(j)(y(j))d (y) over right arrow and T-(b) over right arrow ,T-S* ((f) over right arrow)(x) = sup(delta>0) vertical bar integral(Sigma j=1m) vertical bar x-y(j)vertical bar(2) > delta(2) . Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(j)))K(x, y(1), ..., y(m)) Pi(m)(j=1) f(j) (y(j))d (y) over right arrow vertical bar. These commutators are reflexible enough to generalize several kinds of commutators which already existed. We obtain the weighted strong and endpoint estimates for T-(b) over right arrow ,T-S and T-(b) over right arrow ,T-S* with multiple weights. These results are based on an estimate of the Fefferman-Stein sharp maximal function of the commutators, which is proved in a pretty much more organized way than some known proofs. Similar results for the commutators of vector-valued multilinear Calderon-Zygmund operators are also given.
引用
收藏
页码:1161 / 1188
页数:28
相关论文
共 50 条
  • [31] An Endpoint Weak-Type Estimate for Multilinear Calderon-Zygmund Operators
    Stockdale, Cody B.
    Wick, Brett D.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (05) : 2635 - 2652
  • [32] Calderon-Zygmund Operators and Commutators in Spaces of Homogeneous Type: Weighted Inequalities
    Anderson, T. C.
    Damian, W.
    ANALYSIS MATHEMATICA, 2022, 48 (04) : 939 - 959
  • [33] Multilinear Calderon-Zygmund operators with kernels of Dini's type and applications
    Lu, Guozhen
    Zhang, Pu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 107 : 92 - 117
  • [34] BOUNDEDNESS FOR THE MULTI-COMMUTATORS OF CALDERON-ZYGMUND OPERATORS
    Tao, Xiangxing
    Wu, Yunpin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04): : 655 - 672
  • [35] On pointwise and weighted estimates for commutators of Calderon-Zygmund operators
    Lerner, Andrei K.
    Ombrosi, Sheldy
    Rivera-Rios, Israel P.
    ADVANCES IN MATHEMATICS, 2017, 319 : 153 - 181
  • [36] Weighted estimates for commutators of anisotropic Calderon-Zygmund operators
    Li, Jinxia
    He, Jianxun
    APPLICABLE ANALYSIS, 2022, 101 (04) : 1299 - 1314
  • [37] WEIGHTED ENDPOINT ESTIMATES FOR COMMUTATORS OF CALDERON-ZYGMUND OPERATORS
    Liang, Yiyu
    Luong Dang Ky
    Yang, Dachun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5171 - 5181
  • [38] Multilinear Calderon-Zygmund operators on Hardy spaces, II
    Grafakos, Loukas
    He, Danqing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 511 - 521
  • [39] HARDY-TYPE SPACE ESTIMATES FOR MULTILINEAR COMMUTATORS OF CALDERON-ZYGMUND OPERATORS ON NONHOMOGENEOUS METRIC MEASURE SPACE
    Chen, Jie
    Lin, Haibo
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (03): : 477 - 496
  • [40] Calderon-Zygmund Operators and Commutators on Weighted Lorentz Spaces
    Carro, Maria J.
    Li, Hongliang
    Soria, Javier
    Sun, Qinxiu
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (09) : 8979 - 8990