Generalized commutators of multilinear Calderon-Zygmund type operators

被引:6
|
作者
Xue, Qingying [1 ]
Yan, Jingquan [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anshan, Anhui, Peoples R China
关键词
multilinear Calderon-Zygmund operators; Commutators; Multiple weights; WEIGHTED NORM INEQUALITIES; SINGULAR-INTEGRALS; ITERATED COMMUTATORS; EXTRAPOLATION; BOUNDS;
D O I
10.2969/jmsj/06831161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be an m-linear Calderon-Zygmund operator with kernel K and T* be the maximal operator of T. Let S be a finite subset of Z(+) x {1,...,m} and denote d (y) over right arrow = dy(1) ... dy(m). Define the commutator T-(b) over right arrow ,T-S, of T, and T-(b) over right arrow ,T-S* of T* by T-(b) over right arrow ,T-S ((f) over right arrow)(x) = integral(Rnm) Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(i))).K(x, y(1), ..., y(m))Pi(m)(j=1) f(j)(y(j))d (y) over right arrow and T-(b) over right arrow ,T-S* ((f) over right arrow)(x) = sup(delta>0) vertical bar integral(Sigma j=1m) vertical bar x-y(j)vertical bar(2) > delta(2) . Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(j)))K(x, y(1), ..., y(m)) Pi(m)(j=1) f(j) (y(j))d (y) over right arrow vertical bar. These commutators are reflexible enough to generalize several kinds of commutators which already existed. We obtain the weighted strong and endpoint estimates for T-(b) over right arrow ,T-S and T-(b) over right arrow ,T-S* with multiple weights. These results are based on an estimate of the Fefferman-Stein sharp maximal function of the commutators, which is proved in a pretty much more organized way than some known proofs. Similar results for the commutators of vector-valued multilinear Calderon-Zygmund operators are also given.
引用
收藏
页码:1161 / 1188
页数:28
相关论文
共 50 条
  • [1] Continuity property for the commutators of multilinear Calderon-Zygmund operators
    Li, Wenjuan
    Xue, Qingying
    FORUM MATHEMATICUM, 2013, 25 (04) : 771 - 785
  • [2] The commutators of multilinear Calderon-Zygmund operators on weighted Hardy spaces
    Han, Yanyan
    Wen, Yongming
    Wu, Huoxiong
    Xue, Qingying
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (04) : 1259 - 1280
  • [3] MULTILINEAR STRONGLY SINGULAR CALDERON-ZYGMUND OPERATORS AND COMMUTATORS ON MORREY TYPE SPACES
    Lin, Yan
    Yan, Huihui
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (02): : 351 - 375
  • [4] COMMUTATORS OF MULTILINEAR CALDERON-ZYGMUND OPERATORS WITH KERNELS OF DINI'S TYPE AND APPLICATIONS
    Zhang, Pu
    Sun, Jie
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 1071 - 1093
  • [5] Endpoint estimates for the commutators of multilinear Calderon-Zygmund operators with Dini type kernels
    Li, Zhengyang
    Xue, Qingying
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [6] CALDERON-ZYGMUND OPERATORS WITH KERNELS OF DINI'S TYPE AND THEIR MULTILINEAR COMMUTATORS ON GENERALIZED WEIGHTED MORREY SPACES
    Guliyev, V. S.
    Ismayilova, A. F.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 12 (02): : 265 - 277
  • [7] Weighted Lipschitz estimates for commutators of multilinear Calderon-Zygmund operators with Dini type kernels
    Sun, Jie
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [8] MULTIPLE WEIGHTED NORM INEQUALITIES FOR COMMUTATORS OF MULTILINEAR CALDERON-ZYGMUND AND POTENTIAL TYPE OPERATORS
    Wang, Panwang
    Liu, Zongguang
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 11 (03): : 211 - 228
  • [9] CALDERON-ZYGMUND OPERATORS WITH KERNELS OF DINI'S TYPE AND THEIR MULTILINEAR COMMUTATORS ON GENERALIZED VARIABLE EXPONENT MORREY SPACES
    Guliyev, Vagif S.
    Ismayilova, Afag F.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2021, 47 (02): : 286 - 300
  • [10] Commutators of Θ Type Calderon-Zygmund Operators and Campanato Functions
    Zhou, T.
    Zhao, K.
    Chai, Y.
    Wang, L. L.
    MANUFACTURING, DESIGN SCIENCE AND INFORMATION ENGINEERING, VOLS I AND II, 2015, : 1256 - 1263