A general interactive framework for false discovery rate control under structural constraints

被引:18
|
作者
Lei, Lihua [1 ]
Ramdas, Aaditya [2 ]
Fithian, William [3 ]
机构
[1] Stanford Univ, Dept Stat, 202 Sequoia Hall,390 Serra Mall, Stanford, CA 94305 USA
[2] Carnegie Mellon Univ, Dept Stat & Data Sci, 132H Baker Hall, Pittsburgh, PA 15213 USA
[3] Univ Calif Berkeley, Dept Stat, 301 Evans Hall, Berkeley, CA 94720 USA
关键词
Accumulation test; Data carving; False discovery rate; Interactive multiple testing; Knockoff; Masking;
D O I
10.1093/biomet/asaa064
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a general framework based on selectively traversed accumulation rules for interactive multiple testing with generic structural constraints on the rejection set. It combines accumulation tests from ordered multiple testing with data-carving ideas from post-selection inference, allowing highly flexible adaptation to generic structural information. Our procedure defines an interactive protocol for gradually pruning a candidate rejection set, beginning with the set of all hypotheses and shrinking the set with each step. By restricting the information at each step via a technique we call masking, our protocol enables interaction while controlling the false discovery rate in finite samples for any data-adaptive update rule that the analyst may choose. We suggest update rules for a variety of applications with complex structural constraints, demonstrate that selectively traversed accumulation rules perform well in problems ranging from convex region detection to false discovery rate control on directed acyclic graphs, and show how to extend the framework to regression problems where knockoff statistics are available in lieu of p-values.
引用
收藏
页码:253 / 267
页数:15
相关论文
共 50 条
  • [41] False discovery rate control via debiased lasso
    Javanmard, Adel
    Javadi, Hamid
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 1212 - 1253
  • [42] False Discovery Rate Control via Data Splitting
    Dai, Chenguang
    Lin, Buyu
    Xing, Xin
    Liu, Jun S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2503 - 2520
  • [43] Online control of the false discovery rate with decaying memory
    Ramdas, Aaditya
    Yang, Fanny
    Wainwright, Martin J.
    Jordan, Michael, I
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [44] False discovery rate control with e-values
    Wang, Ruodu
    Ramdas, Aaditya
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (03) : 822 - 852
  • [45] Conformal link prediction for false discovery rate control
    Marandon, Ariane
    TEST, 2024, 33 (04) : 1062 - 1083
  • [46] Importance of presenting the variability of the false discovery rate control
    Lin, Yi-Ting
    Lee, Wen-Chung
    BMC GENETICS, 2015, 16
  • [47] A Fuzzy Permutation Method for False Discovery Rate Control
    Yang, Ya-Hui
    Lin, Wan-Yu
    Lee, Wen-Chung
    SCIENTIFIC REPORTS, 2016, 6
  • [48] ADAPTIVE FALSE DISCOVERY RATE CONTROL FOR HETEROGENEOUS DATA
    Habiger, Joshua D.
    STATISTICA SINICA, 2017, 27 (04) : 1731 - 1756
  • [49] Wavelet thresholding with Bayesian false discovery rate control
    Tadesse, MG
    Ibrahim, JG
    Vannucci, M
    Gentleman, R
    BIOMETRICS, 2005, 61 (01) : 25 - 35
  • [50] Testing Jumps via False Discovery Rate Control
    Yen, Yu-Min
    PLOS ONE, 2013, 8 (04):