A general interactive framework for false discovery rate control under structural constraints

被引:18
|
作者
Lei, Lihua [1 ]
Ramdas, Aaditya [2 ]
Fithian, William [3 ]
机构
[1] Stanford Univ, Dept Stat, 202 Sequoia Hall,390 Serra Mall, Stanford, CA 94305 USA
[2] Carnegie Mellon Univ, Dept Stat & Data Sci, 132H Baker Hall, Pittsburgh, PA 15213 USA
[3] Univ Calif Berkeley, Dept Stat, 301 Evans Hall, Berkeley, CA 94720 USA
关键词
Accumulation test; Data carving; False discovery rate; Interactive multiple testing; Knockoff; Masking;
D O I
10.1093/biomet/asaa064
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a general framework based on selectively traversed accumulation rules for interactive multiple testing with generic structural constraints on the rejection set. It combines accumulation tests from ordered multiple testing with data-carving ideas from post-selection inference, allowing highly flexible adaptation to generic structural information. Our procedure defines an interactive protocol for gradually pruning a candidate rejection set, beginning with the set of all hypotheses and shrinking the set with each step. By restricting the information at each step via a technique we call masking, our protocol enables interaction while controlling the false discovery rate in finite samples for any data-adaptive update rule that the analyst may choose. We suggest update rules for a variety of applications with complex structural constraints, demonstrate that selectively traversed accumulation rules perform well in problems ranging from convex region detection to false discovery rate control on directed acyclic graphs, and show how to extend the framework to regression problems where knockoff statistics are available in lieu of p-values.
引用
收藏
页码:253 / 267
页数:15
相关论文
共 50 条
  • [21] Comments on: Control of the false discovery rate under dependence using the bootstrap and subsampling
    Yekutieli D.
    TEST, 2008, 17 (3) : 458 - 460
  • [22] Rejoinder on: Control of the false discovery rate under dependence using the bootstrap and subsampling
    Romano J.P.
    Shaikh A.M.
    Wolf M.
    TEST, 2008, 17 (3) : 461 - 471
  • [23] Comments on: Control of the false discovery rate under dependence using the bootstrap and subsampling
    Sarkar S.K.
    Heller R.
    TEST, 2008, 17 (3) : 450 - 455
  • [24] Distributed False Discovery Rate Control with Quantization
    Xiang, Yu
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 246 - 249
  • [25] Optimal weighting for false discovery rate control
    Roquain, Etienne
    van de Wiel, Mark A.
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 678 - 711
  • [26] Contextual Online False Discovery Rate Control
    Chen, Shiyun
    Kasiviswanathan, Shiva Prasad
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 952 - 960
  • [27] The application conditions of false discovery rate control
    Zhang, Hongbin
    Le, Xin
    Xiang, Tingxiu
    GENES & DISEASES, 2023, 10 (04) : 1145 - 1146
  • [28] Symmetric directional false discovery rate control
    Holte, Sarah E.
    Lee, Eva K.
    Mei, Yajun
    STATISTICAL METHODOLOGY, 2016, 33 : 71 - 82
  • [29] Copulas, uncertainty, and false discovery rate control
    Cerquet, Roy
    Lupi, Claudio
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 100 : 105 - 114
  • [30] MOTION DETECTION WITH FALSE DISCOVERY RATE CONTROL
    McHugh, J. Mike
    Konrad, Janusz
    Saligrama, Venkatesh
    Jodoin, Pierre-Marc
    Castanon, David
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 873 - 876