MULTIPLE SOLUTIONS OF FRACTIONAL KIRCHHOFF EQUATIONS INVOLVING A CRITICAL NONLINEARITY

被引:3
|
作者
Jin, Hua [1 ]
Liu, Wenbin [1 ]
Zhang, Jianjun [2 ]
机构
[1] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Peoples R China
[2] Chongqing Jiaotong Univ, Coll Mathemat & Stat, Chongqing 400074, Peoples R China
来源
关键词
Fractional Kirchhoff equation; multiple solutions; critical nonlinearity; BREZIS-NIRENBERG RESULT; POSITIVE SOLUTIONS; EXISTENCE; BIFURCATION; BEHAVIOR;
D O I
10.3934/dcdss.2018029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following fractional Kirchhoff equation { (a + b integral N-R vertical bar (-Delta)s/2 u vertical bar(2)) (-Delta)(s)(u) = lambda u + mu vertical bar u vertical bar(q-2) u + vertical bar u vertical bar(s)(2)*(-2)u in Omega, R-N\Omega in u=0 where N > 2s, a,b,lambda,mu > 0, s is an element of (0,1) and Omega is a boundeden domain with continuous boundary. Here (-Delta)(s) is the fractional Laplacian operator. For 2 < q <= min {4,2(S)(*)} we prove that if b is small or is large, the problem above admits multiple solutions by virtue of a linking theorem due to G. Cerami, D. Fortunato and M. Struwe [7, Theorem 2.5].
引用
收藏
页码:533 / 545
页数:13
相关论文
共 50 条
  • [41] Existence of nontrivial solutions for Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity
    Gao, Liu
    Chen, Chunfang
    Chen, Jianhua
    Zhu, Chuanxi
    AIMS MATHEMATICS, 2021, 6 (02): : 1332 - 1347
  • [42] Fractional Kirchhoff equation with critical exponential nonlinearity
    Giacomoni, J.
    Mishra, Pawan Kumar
    Sreenadh, K.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (09) : 1241 - 1266
  • [43] Fractional Kirchhoff problem with critical indefinite nonlinearity
    do O, Joao Marcos
    He, Xiaoming
    Mishra, Pawan Kumar
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) : 615 - 632
  • [44] Fractional Kirchhoff equation with a general critical nonlinearity
    Jin, Hua
    Liu, Wenbin
    APPLIED MATHEMATICS LETTERS, 2017, 74 : 140 - 146
  • [45] Multiplicity and Concentration Behavior of Solutions to a Class of Fractional Kirchhoff Equation Involving Exponential Nonlinearity
    Song, Yueqiang
    Sun, Xueqi
    Liang, Sihua
    Nguyen, Van Thin
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
  • [46] Multiple positive solutions for degenerate Kirchhoff equations with singular and Choquard nonlinearity
    Rawat, Sushmita
    Sreenadh, Konijeti
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 13812 - 13832
  • [47] On critical N-Kirchhoff type equations involving Trudinger-Moser nonlinearity
    Zhang, Limin
    Tang, Xianhua
    Zhang, Ning
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 5945 - 5964
  • [48] Critical groups and multiple solutions for Kirchhoff type equations with critical exponents
    Sun, Mingzheng
    Su, Jiabao
    Zhang, Binlin
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (07)
  • [49] Infinitelymany solutions for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity
    Song, Yueqiang
    Shi, Shaoyun
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3223 - 3232
  • [50] Existence of sign-changing solutions for Kirchhoff equations with critical or supercritical nonlinearity
    Gao, Liu
    Chen, Chunfang
    Zhu, Chuanxi
    APPLIED MATHEMATICS LETTERS, 2020, 107