MULTIPLE SOLUTIONS OF FRACTIONAL KIRCHHOFF EQUATIONS INVOLVING A CRITICAL NONLINEARITY

被引:3
|
作者
Jin, Hua [1 ]
Liu, Wenbin [1 ]
Zhang, Jianjun [2 ]
机构
[1] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Peoples R China
[2] Chongqing Jiaotong Univ, Coll Mathemat & Stat, Chongqing 400074, Peoples R China
来源
关键词
Fractional Kirchhoff equation; multiple solutions; critical nonlinearity; BREZIS-NIRENBERG RESULT; POSITIVE SOLUTIONS; EXISTENCE; BIFURCATION; BEHAVIOR;
D O I
10.3934/dcdss.2018029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following fractional Kirchhoff equation { (a + b integral N-R vertical bar (-Delta)s/2 u vertical bar(2)) (-Delta)(s)(u) = lambda u + mu vertical bar u vertical bar(q-2) u + vertical bar u vertical bar(s)(2)*(-2)u in Omega, R-N\Omega in u=0 where N > 2s, a,b,lambda,mu > 0, s is an element of (0,1) and Omega is a boundeden domain with continuous boundary. Here (-Delta)(s) is the fractional Laplacian operator. For 2 < q <= min {4,2(S)(*)} we prove that if b is small or is large, the problem above admits multiple solutions by virtue of a linking theorem due to G. Cerami, D. Fortunato and M. Struwe [7, Theorem 2.5].
引用
收藏
页码:533 / 545
页数:13
相关论文
共 50 条