Generation of nuclear data using Gaussian process regression

被引:15
|
作者
Iwamoto, Hiroki [1 ]
机构
[1] Japan Atom Energy Agcy, Nucl Sci & Engn Ctr, Tokai, Ibaraki, Japan
关键词
Gaussian process regression; nuclear data; nuclide production cross-section; uncertainty; CROSS-SECTIONS; NUCLIDE PRODUCTION; DATA LIBRARY; CODE; NI; SIMULATION; ELEMENTS; URANIUM; FE; MG;
D O I
10.1080/00223131.2020.1736202
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A new approach for generating nuclear data from experimental cross-section data is presented based on Gaussian process regression. This paper focuses on the generation of nuclear data for proton-induced nuclide production cross-sections with a nickel target. Our results provide reasonable regression curves and corresponding uncertainties and demonstrate that this approach is effective for generating nuclear data. Additionally, our results indicate that this approach can be applied in experimental design to reduce the uncertainty of generated nuclear data.
引用
收藏
页码:932 / 938
页数:7
相关论文
共 50 条
  • [41] Gaussian process robust regression for noisy heart rate data
    Stegle, Oliver
    Fallert, Sebastian V.
    MacKay, David J. C.
    Brage, Soren
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (09) : 2143 - 2151
  • [42] Understanding and comparing scalable Gaussian process regression for big data
    Liu, Haitao
    Cai, Jianfei
    Ong, Yew-Soon
    Wang, Yi
    KNOWLEDGE-BASED SYSTEMS, 2019, 164 (324-335) : 324 - 335
  • [43] Revealing transient strain in geodetic data with Gaussian process regression
    Hines, T. T.
    Hetland, E. A.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 212 (03) : 2116 - 2130
  • [44] GAUSSIAN PROCESS REGRESSION BASED GAS TURBINE PERFORMANCE DECK GENERATION
    Gullu, Emrah
    Aran, Volkan
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [45] Modeling Complex Robotic Assembly Process Using Gaussian Process Regression
    Li, Binbin
    Cheng, Hongtai
    Chen, Heping
    Jin, Tongdan
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 456 - +
  • [46] Blending physics with data using an efficient Gaussian process regression with soft inequality and monotonicity constraints
    Kochan, Didem
    Yang, Xiu
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2025, 10
  • [47] Soil moisture estimation using synergy of optical, SAR and topographic data with Gaussian Process Regression
    Stamenkovic, J.
    Notarnicola, C.
    Spindler, N.
    Cuozzo, G.
    Bertoldi, G.
    Della Chiesa, S.
    Niedrist, G.
    Greifeneder, F.
    Tuia, D.
    Borgeaud, M.
    Thiran, J-Ph
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XIV, 2014, 9243
  • [48] A WIND SPEED FORECASTING METHOD USING A GAUSSIAN PROCESS REGRESSION MODEL CONSIDERING DATA UNCERTAINTY
    Chen, Huize
    Jiang, Xiaomo
    Hull, Huaiyu
    Zhang, Kexin
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 13, 2024,
  • [49] Prediction of Landing Gear Loads from Flight Test Data Using Gaussian Process Regression
    Cross, E. J.
    Sartor, P.
    Worden, K.
    Southern, P.
    STRUCTURAL HEALTH MONITORING 2013, VOLS 1 AND 2, 2013, : 1452 - +
  • [50] BATTERY CAPACITY ESTIMATION FROM PARTIAL-CHARGING DATA USING GAUSSIAN PROCESS REGRESSION
    Richardson, Robert R.
    Birkl, Christoph R.
    Osborne, Michael A.
    Howey, David A.
    PROCEEDINGS OF THE ASME 10TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2017, VOL 1, 2017,