Generation of nuclear data using Gaussian process regression

被引:15
|
作者
Iwamoto, Hiroki [1 ]
机构
[1] Japan Atom Energy Agcy, Nucl Sci & Engn Ctr, Tokai, Ibaraki, Japan
关键词
Gaussian process regression; nuclear data; nuclide production cross-section; uncertainty; CROSS-SECTIONS; NUCLIDE PRODUCTION; DATA LIBRARY; CODE; NI; SIMULATION; ELEMENTS; URANIUM; FE; MG;
D O I
10.1080/00223131.2020.1736202
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A new approach for generating nuclear data from experimental cross-section data is presented based on Gaussian process regression. This paper focuses on the generation of nuclear data for proton-induced nuclide production cross-sections with a nickel target. Our results provide reasonable regression curves and corresponding uncertainties and demonstrate that this approach is effective for generating nuclear data. Additionally, our results indicate that this approach can be applied in experimental design to reduce the uncertainty of generated nuclear data.
引用
收藏
页码:932 / 938
页数:7
相关论文
共 50 条
  • [21] STANDARDIZING TYPE Ia SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION
    Kim, A. G.
    Thomas, R. C.
    Aldering, G.
    Antilogus, P.
    Aragon, C.
    Bailey, S.
    Baltay, C.
    Bongard, S.
    Buton, C.
    Canto, A.
    Cellier-Holzem, F.
    Childress, M.
    Chotard, N.
    Copin, Y.
    Fakhouri, H. K.
    Gangler, E.
    Guy, J.
    Kerschhaggl, M.
    Kowalski, M.
    Nordin, J.
    Nugent, P.
    Paech, K.
    Pain, R.
    Pecontal, E.
    Pereira, R.
    Perlmutter, S.
    Rabinowitz, D.
    Rigault, M.
    Runge, K.
    Saunders, C.
    Scalzo, R.
    Smadja, G.
    Tao, C.
    Weaver, B. A.
    Wu, C.
    ASTROPHYSICAL JOURNAL, 2013, 766 (02):
  • [22] Data-driven stochastic AC-OPF using Gaussian process regression
    Mitrovic, Mile
    Lukashevich, Aleksandr
    Vorobev, Petr
    Terzija, Vladimir
    Budennyy, Semen
    Maximov, Yury
    Deka, Deepjyoti
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 152
  • [23] Wind power prediction with missing data using Gaussian process regression and multiple imputation
    Liu, Tianhong
    Wei, Haikun
    Zhang, Kanjian
    APPLIED SOFT COMPUTING, 2018, 71 : 905 - 916
  • [24] Data Driven Prognosis of Fracture Dynamics Using Tensor Train and Gaussian Process Regression
    Duong, Pham Luu Trung
    Hussain, Shaista
    Jhon, Mark Hyunpong
    Raghavan, Nagarajan
    IEEE ACCESS, 2020, 8 : 222256 - 222266
  • [25] Using Gaussian process regression for efficient parameter reconstruction
    Schneider, Philipp-Immanuel
    Hammerschmidt, Martin
    Zschiedrich, Lin
    Burger, Sven
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXIII, 2019, 10959
  • [26] The pitfalls of using Gaussian Process Regression for normative modeling
    Xu, Bohan
    Kuplicki, Rayus
    Sen, Sandip
    Paulus, Martin P.
    PLOS ONE, 2021, 16 (09):
  • [27] Modelling pile capacity using Gaussian process regression
    Pal, Mahesh
    Deswal, Surinder
    COMPUTERS AND GEOTECHNICS, 2010, 37 (7-8) : 942 - 947
  • [28] Gaussian process regression using partition resampling model
    Winarni, Sri
    Indratno, Sapto Wahyu
    Sari, Kurnia Novita
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (02): : 853 - 864
  • [29] Monthly streamflow forecasting using Gaussian Process Regression
    Sun, Alexander Y.
    Wang, Dingbao
    Xu, Xianli
    JOURNAL OF HYDROLOGY, 2014, 511 : 72 - 81
  • [30] A hierarchical approach to scalable Gaussian process regression for spatial data
    Jacob Dearmon
    Tony E. Smith
    Journal of Spatial Econometrics, 2021, 2 (1):