Generation of nuclear data using Gaussian process regression

被引:15
|
作者
Iwamoto, Hiroki [1 ]
机构
[1] Japan Atom Energy Agcy, Nucl Sci & Engn Ctr, Tokai, Ibaraki, Japan
关键词
Gaussian process regression; nuclear data; nuclide production cross-section; uncertainty; CROSS-SECTIONS; NUCLIDE PRODUCTION; DATA LIBRARY; CODE; NI; SIMULATION; ELEMENTS; URANIUM; FE; MG;
D O I
10.1080/00223131.2020.1736202
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A new approach for generating nuclear data from experimental cross-section data is presented based on Gaussian process regression. This paper focuses on the generation of nuclear data for proton-induced nuclide production cross-sections with a nickel target. Our results provide reasonable regression curves and corresponding uncertainties and demonstrate that this approach is effective for generating nuclear data. Additionally, our results indicate that this approach can be applied in experimental design to reduce the uncertainty of generated nuclear data.
引用
收藏
页码:932 / 938
页数:7
相关论文
共 50 条
  • [1] Fast Gaussian process regression using representative data
    Yoshioka, T
    Ishii, S
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 132 - 137
  • [2] Automatic fault detection in seismic data using Gaussian process regression
    Noori, Maryam
    Hassani, Hossein
    Javaherian, Abdolrahim
    Amindavar, Hamidreza
    Torabi, Siyavash
    JOURNAL OF APPLIED GEOPHYSICS, 2019, 163 : 117 - 131
  • [3] Fast Gaussian Process Regression for Big Data
    Das, Sourish
    Roy, Sasanka
    Sambasivan, Rajiv
    BIG DATA RESEARCH, 2018, 14 : 12 - 26
  • [4] Parametric Gaussian process regression for big data
    Maziar Raissi
    Hessam Babaee
    George Em Karniadakis
    Computational Mechanics, 2019, 64 : 409 - 416
  • [5] Parametric Gaussian process regression for big data
    Raissi, Maziar
    Babaee, Hessam
    Karniadakis, George Em
    COMPUTATIONAL MECHANICS, 2019, 64 (02) : 409 - 416
  • [6] Gaussian Process Regression for Structured Data Sets
    Belyaev, Mikhail
    Burnaev, Evgeny
    Kapushev, Yermek
    STATISTICAL LEARNING AND DATA SCIENCES, 2015, 9047 : 106 - 115
  • [7] Regression analysis for multivariate process data of counts using convolved Gaussian processes
    Sofro, A'yunin
    Shi, Jian Qing
    Cao, Chunzheng
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 206 : 57 - 74
  • [8] Estimation of Spatial Distribution Considering Indirect Data Using Gaussian Process Regression
    Tsuda, Yuto
    Tomizawa, Yukihisa
    Yoshida, Ikumasa
    Otake, Yu
    GEO-RISK 2023: INNOVATION IN DATA AND ANALYSIS METHODS, 2023, 345 : 94 - 101
  • [9] Dealing with Observation Outages within Navigation Data using Gaussian Process Regression
    Chen, Hongmei
    Cheng, Xianghong
    Wang, Haipeng
    Han, Xu
    JOURNAL OF NAVIGATION, 2014, 67 (04): : 603 - 615
  • [10] Gaussian Process Regression for a PMV Prediction Model using Environmental Monitoring Data
    Yoon, Young Ran
    Moon, Hyeun Jun
    Kim, Sun Ho
    Kim, Jeong Won
    PROCEEDINGS OF BUILDING SIMULATION 2019: 16TH CONFERENCE OF IBPSA, 2020, : 2540 - 2545