A fast state-of-health estimation method using single linear feature for lithium-ion batteries

被引:29
|
作者
Shi, Mingjie [1 ,2 ]
Xu, Jun [1 ,2 ]
Lin, Chuanping [1 ,2 ]
Mei, Xuesong [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Shaanxi Key Lab Intelligent Robots, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; State of health; Fast estimation; Linear regression; REGRESSION; CHARGE; MODEL;
D O I
10.1016/j.energy.2022.124652
中图分类号
O414.1 [热力学];
学科分类号
摘要
Data-driven methods are commonly used for state of health (SOH) estimation, which is essential to battery energy management. However, complex machine learning models, data gathering, and feature processing hinder its further implementation. A fast SOH estimation method based on linear properties of short-time charging is proposed to overcome these challenges. Only the exceptional single linear health factor (LHF) is required for effective SOH estimation. The LHF is chosen through correlation analysis from short- term feature derived from charging curves. The processing is straightforward. To define the relationship between LHF and SOH, a linear regression model is developed. For the simplicity and effectiveness of the method, it is suitable to be implemented in online applications with low hardware requirements. Finally, experiments show that the SOH estimation method has the highest accuracy of 0.54%, and the biggest estimation error is 2.20%. Furthermore, the data from first 20% cycles of the battery are used to build the model, ensuring that the SOH estimation accuracy is comparable. It is worth noting that the time cost of data acquisition does not exceed 30 s, which is important for fast estimation. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
    Lin, Chuanping
    Xu, Jun
    Mei, Xuesong
    ENERGY STORAGE MATERIALS, 2023, 54 : 85 - 97
  • [32] Analysis of State-of-Health Estimation Approaches and Constraints for Lithium-Ion Batteries in Electric Vehicles
    Vaghela, Rohan
    Ramani, Pooja
    Sarda, Jigar
    Hui, Kueh Lee
    Sain, Mangal
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [33] State-of-Health Estimation of Lithium-ion Batteries Based on CNN-LSTM-Attention
    Ding, Dong
    Mao, Songheng
    Fan, Yuan
    2024 3RD CONFERENCE ON FULLY ACTUATED SYSTEM THEORY AND APPLICATIONS, FASTA 2024, 2024, : 837 - 842
  • [34] Improving the state-of-health estimation of lithium-ion batteries based on limited labeled data
    Han, Dou
    Zhang, Yongzhi
    Ruan, Haijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [35] State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles-A Review
    Zhang, Jianyu
    Li, Kang
    ENERGIES, 2024, 17 (22)
  • [36] State-of-health estimation for lithium-ion batteries using differential thermal voltammetry and Gaussian process regression
    Ping Wang
    Xiangyuan Peng
    Cheng Ze
    Journal of Power Electronics, 2022, 22 : 1165 - 1175
  • [37] State-of-health estimation for lithium-ion batteries using differential thermal voltammetry and Gaussian process regression
    Wang, Ping
    Peng, Xiangyuan
    Ze, Cheng
    JOURNAL OF POWER ELECTRONICS, 2022, 22 (07) : 1165 - 1175
  • [38] Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation
    Wang, Huan
    Li, Yan-Fu
    Zhang, Ying
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 188
  • [39] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Liu, Yanshuo
    Wang, Licheng
    Li, Dezhi
    Wang, Kai
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2023, 8 (01)
  • [40] State-of-Health Estimation of Lithium-Ion Batteries based on Partial Charging Voltage Profiles
    Stroe, D. -I.
    Knap, V.
    Schaltz, E.
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 379 - 386