A fast state-of-health estimation method using single linear feature for lithium-ion batteries

被引:29
|
作者
Shi, Mingjie [1 ,2 ]
Xu, Jun [1 ,2 ]
Lin, Chuanping [1 ,2 ]
Mei, Xuesong [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Shaanxi Key Lab Intelligent Robots, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; State of health; Fast estimation; Linear regression; REGRESSION; CHARGE; MODEL;
D O I
10.1016/j.energy.2022.124652
中图分类号
O414.1 [热力学];
学科分类号
摘要
Data-driven methods are commonly used for state of health (SOH) estimation, which is essential to battery energy management. However, complex machine learning models, data gathering, and feature processing hinder its further implementation. A fast SOH estimation method based on linear properties of short-time charging is proposed to overcome these challenges. Only the exceptional single linear health factor (LHF) is required for effective SOH estimation. The LHF is chosen through correlation analysis from short- term feature derived from charging curves. The processing is straightforward. To define the relationship between LHF and SOH, a linear regression model is developed. For the simplicity and effectiveness of the method, it is suitable to be implemented in online applications with low hardware requirements. Finally, experiments show that the SOH estimation method has the highest accuracy of 0.54%, and the biggest estimation error is 2.20%. Furthermore, the data from first 20% cycles of the battery are used to build the model, ensuring that the SOH estimation accuracy is comparable. It is worth noting that the time cost of data acquisition does not exceed 30 s, which is important for fast estimation. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] State-of-health estimation for lithium-ion batteries using relaxation voltage under dynamic conditions
    Ke, Xue
    Hong, Huawei
    Zheng, Peng
    Zhang, Shuling
    Zhu, Lingling
    Li, Zhicheng
    Cai, Jiaxin
    Fan, Peixiao
    Yang, Jun
    Wang, Jun
    Li, Li
    Kuai, Chunguang
    Guo, Yuzheng
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [22] Research on State-of-Health Estimation for Lithium-Ion Batteries Based on the Charging Phase
    Du, Changqing
    Qi, Rui
    Ren, Zhong
    Xiao, Di
    ENERGIES, 2023, 16 (03)
  • [23] Indirect State-of-Health Estimation for Lithium-Ion Batteries under Randomized Use
    Yu, Jinsong
    Mo, Baohua
    Tang, Diyin
    Yang, Jie
    Wan, Jiuqing
    Liu, Jingjing
    ENERGIES, 2017, 10 (12)
  • [24] Partial Charging Method for Lithium-Ion Battery State-of-Health Estimation
    Schaltz, Erik
    Stroe, Daniel-Ioan
    Norregaard, Kjeld
    Johnsen, Bjarne
    Christensen, Andreas
    2019 FOURTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2019,
  • [25] A novel feature optimization and ensemble learning method for state-of-health prediction of mining lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Zhao, Yang
    Zhang, Xing
    Zhan, Xinju
    Wang, Shunli
    ENERGY, 2024, 299
  • [26] State-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model
    Li, Yang
    Gao, Guoqiang
    Chen, Kui
    He, Shuhang
    Liu, Kai
    Xin, Dongli
    Luo, Yang
    Long, Zhou
    Wu, Guangning
    ENERGY, 2025, 319
  • [27] State-of-health estimation for lithium-ion batteries based on Bi-LSTM-AM and LLE feature extraction
    Wang, Wentao
    Yang, Gaoyuan
    Li, Muxi
    Yan, Zuoyi
    Zhang, Lisheng
    Yu, Hanqing
    Yang, Kaiyi
    Jiang, Pengchang
    Hua, Wei
    Zhang, Yong
    Zou, Bosong
    Yang, Kai
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [28] A Temporal Fusion Memory Network-Based Method for State-of-Health Estimation of Lithium-Ion Batteries
    Chen, Kang
    Wang, Dandan
    Guo, Wenwen
    BATTERIES-BASEL, 2024, 10 (08):
  • [29] State of Health Estimation of Lithium-Ion Batteries Using Data Augmentation and Feature Mapping
    Yao, Wei
    Lai, Rucong
    Tian, Yong
    Li, Xiaoyu
    Tian, Jindong
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 4895 - 4905
  • [30] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Yanshuo Liu
    Licheng Wang
    Dezhi Li
    Kai Wang
    Protection and Control of Modern Power Systems, 2023, 8