Stability of the solutions of the Gross-Pitaevskii equation

被引:20
|
作者
Jackson, AD
Kavoulakis, GM
Lundh, E
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[2] Lund Inst Technol, SE-22100 Lund, Sweden
[3] KTH, Dept Phys, SE-10691 Stockholm, Sweden
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevA.72.053617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We examine the static and dynamic stability of the solutions of the Gross-Pitaevskii equation and demonstrate the intimate connection between them. All salient features related to dynamic stability are reflected systematically in static properties. We find, for example, the obvious result that static stability always implies dynamic stability and present a simple explanation of the fact that dynamic stability can exist even in the presence of static instability.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A multisymplectic Scheme for Gross-Pitaevskii Equation
    Tian, YiMin
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 562 - 563
  • [42] The Gross-Pitaevskii equation in the energy space
    Gerard, Patrick
    STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 129 - 148
  • [43] Rigorous derivation of the Gross-Pitaevskii equation
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    PHYSICAL REVIEW LETTERS, 2007, 98 (04)
  • [44] Quantitative Derivation of the Gross-Pitaevskii Equation
    Benedikter, Niels
    de Oliveira, Gustavo
    Schlein, Benjamin
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) : 1399 - 1482
  • [45] A critique on the misuse of the Gross-Pitaevskii equation
    Geltman, Sydney
    EPL, 2009, 87 (01)
  • [46] The stochastic Gross-Pitaevskii equation: II
    Gardiner, CW
    Davis, MJ
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2003, 36 (23) : 4731 - 4753
  • [47] Gross-Pitaevskii equation: Variational approach
    Perez, JCD
    Trallero-Giner, C
    Richard, VL
    Trallero-Herrero, C
    Birman, JL
    PHYSICA STATUS SOLIDI C - CONFERENCE AND CRITICAL REVIEWS, VOL 2, NO 10, 2005, 2 (10): : 3665 - 3668
  • [48] The Cauchy problem for the Gross-Pitaevskii equation
    Gerard, P.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 765 - 779
  • [49] The inverse problem for the Gross-Pitaevskii equation
    Malomed, Boris A.
    Stepanyants, Yury A.
    CHAOS, 2010, 20 (01)
  • [50] A symplectic scheme of Gross-Pitaevskii Equation
    Tian, YiMin
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 552 - 553