Stability of the solutions of the Gross-Pitaevskii equation

被引:20
|
作者
Jackson, AD
Kavoulakis, GM
Lundh, E
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[2] Lund Inst Technol, SE-22100 Lund, Sweden
[3] KTH, Dept Phys, SE-10691 Stockholm, Sweden
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevA.72.053617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We examine the static and dynamic stability of the solutions of the Gross-Pitaevskii equation and demonstrate the intimate connection between them. All salient features related to dynamic stability are reflected systematically in static properties. We find, for example, the obvious result that static stability always implies dynamic stability and present a simple explanation of the fact that dynamic stability can exist even in the presence of static instability.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Vortices in nonlocal Gross-Pitaevskii equation
    Shchesnovich, VS
    Kraenkel, RA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6633 - 6651
  • [32] Numerical solution for the Gross-Pitaevskii equation
    Hua, Wei
    Liu, Xueshen
    Ding, Peizhu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (03) : 243 - 255
  • [33] Vortex helices for the Gross-Pitaevskii equation
    Chiron, D
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (11): : 1555 - 1647
  • [34] Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation
    Berloff, NG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05): : 1617 - 1632
  • [35] On the Gross-Pitaevskii Equation with Pumping and Decay: Stationary States and Their Stability
    Sierra, Jesus
    Kasimov, Aslan
    Markowich, Peter
    Weishaeupl, Rada-Maria
    JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (03) : 709 - 739
  • [36] On the derivation of the Gross-Pitaevskii equation.
    Adami, R
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2005, 8B (02): : 359 - 368
  • [37] Hydrodynamic Limit of the Gross-Pitaevskii Equation
    Jerrard, Robert L.
    Spirn, Daniel
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (02) : 135 - 190
  • [38] Vortex rings for the Gross-Pitaevskii equation
    Bethuel, F
    Orlandi, G
    Smets, D
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (01) : 17 - 94
  • [39] On the bilinear control of the Gross-Pitaevskii equation
    Chambrion, Thomas
    Thomann, Laurent
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (03): : 605 - 626
  • [40] Adiabatic theorem for the Gross-Pitaevskii equation
    Gang, Zhou
    Grech, Philip
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (05) : 731 - 756