A Projected SQP Method for Nonlinear Optimal Control with Quadratic Convergence

被引:0
|
作者
Bayer, Florian A. [1 ]
Notarstefano, Giuseppe [2 ]
Allgoewer, Frank [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[2] Univ Salento, Dept Engn, Lecce, Italy
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a discrete-time Sequential Quadratic Programming (SQP) algorithm for nonlinear optimal control problems. Using the idea by Hauser of projecting curves onto the trajectory space, the introduced algorithm has guaranteed recursive feasibility of the dynamic constraints. The second essential feature of the algorithm is a specific choice of the Lagrange multiplier update. Due to this ad hoc choice of the multiplier, the algorithm converges locally quadratically. Finally, we show how the proposed algorithm connects standard SQP methods for nonlinear optimal control with the Projection Operator Newton method by Hauser.
引用
收藏
页码:6463 / 6468
页数:6
相关论文
共 50 条
  • [41] On the convergence of the quadratic method
    Boulton, Lyonell
    Hobiny, Aatef
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (03) : 1310 - 1333
  • [42] Solving nonlinear optimal control problems using a hybrid IPSO-SQP algorithm
    Modares, Hamidreza
    Sistani, Mohammad-Bagher Naghibi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2011, 24 (03) : 476 - 484
  • [43] Augmented Lagrangian-SQP methods for nonlinear optimal control problems of tracking type
    Ito, K
    Kunisch, K
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (03) : 874 - 891
  • [44] GLOBAL CONVERGENCE OF AN SQP ALGORITHM FOR NONLINEAR OPTIMIZATION WITH OVERDETERMINED CONSTRAINTS
    Hao, Chunlin
    Liu, Xinwei
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (01): : 19 - 29
  • [45] The reduced space Sequential Quadratic Programming (SQP) method for calculating the worst resonance response of nonlinear systems
    Liao, Haitao
    Wu, Wenwang
    Fang, Daining
    JOURNAL OF SOUND AND VIBRATION, 2018, 425 : 301 - 323
  • [46] On the Convergence of Overlapping Schwarz Decomposition for Nonlinear Optimal Control
    Na, Sen
    Shin, Sungho
    Anitescu, Mihai
    Zavala, Victor M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (11) : 5996 - 6011
  • [47] Convergence of solutions to nonlinear nonconvex optimal control problems
    Anh, Lam Quoc
    Tai, Vo Thanh
    Tam, Tran Ngoc
    OPTIMIZATION, 2024, 73 (13) : 3859 - 3897
  • [48] A Laguerre spectral method for quadratic optimal control of nonlinear systems in a semi-infinite interval
    Masoumnezhad, Mojtaba
    Saeedi, Mohammadhossein
    Yu, Haijun
    Nik, Hassan Saberi
    AUTOMATIKA, 2020, 61 (03) : 461 - 474
  • [49] Haar Wavelet Operational Matrix Method for Solving Constrained Nonlinear Quadratic Optimal Control Problem
    Swaidan, Waleeda
    Hussin, Amran
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [50] A quadratically convergent inexact SQP method for optimal control of differential algebraic equations
    Houska, Boris
    Diehl, Moritz
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2013, 34 (04): : 396 - 414