A Projected SQP Method for Nonlinear Optimal Control with Quadratic Convergence

被引:0
|
作者
Bayer, Florian A. [1 ]
Notarstefano, Giuseppe [2 ]
Allgoewer, Frank [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[2] Univ Salento, Dept Engn, Lecce, Italy
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a discrete-time Sequential Quadratic Programming (SQP) algorithm for nonlinear optimal control problems. Using the idea by Hauser of projecting curves onto the trajectory space, the introduced algorithm has guaranteed recursive feasibility of the dynamic constraints. The second essential feature of the algorithm is a specific choice of the Lagrange multiplier update. Due to this ad hoc choice of the multiplier, the algorithm converges locally quadratically. Finally, we show how the proposed algorithm connects standard SQP methods for nonlinear optimal control with the Projection Operator Newton method by Hauser.
引用
收藏
页码:6463 / 6468
页数:6
相关论文
共 50 条
  • [21] Indirect Hp-pseudospectral Method for Nonlinear Quadratic Optimal Control Problem
    Liu, Yuxian
    Li, Yan
    Qiu, Yuqing
    Lang, Jinxi
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 1575 - 1580
  • [22] Optimal control of uncertain nonlinear quadratic systems
    Merola, Alessio
    Cosentino, Carlo
    Colacino, Domenico
    Amato, Francesco
    AUTOMATICA, 2017, 83 : 345 - 350
  • [23] Preconditioning Matrix Synthesis for a Projected Gradient Method for Solving Constrained Linear-Quadratic Optimal Control Problems
    Heuts, Y. J. J.
    Donkers, M. C. F.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 7253 - 7258
  • [24] A Modified SQP Method and Its Global Convergence
    Guanglu Zhou
    Journal of Global Optimization, 1997, 11 : 193 - 205
  • [26] An SQP method for the optimal control of large-scale dynamical systems
    Gill, PE
    Jay, LO
    Leonard, MW
    Petzold, LR
    Sharma, V
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 120 (1-2) : 197 - 213
  • [27] Convergence Rate of the Augmented Lagrangian SQP Method
    D. Kleis
    E. W. Sachs
    Journal of Optimization Theory and Applications, 1997, 95 : 49 - 74
  • [28] A modified SQP method and its global convergence
    Zhou, GL
    JOURNAL OF GLOBAL OPTIMIZATION, 1997, 11 (02) : 193 - 205
  • [29] Convergence rate of the augmented Lagrangian SQP method
    Kleis, D
    Sachs, EW
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 95 (01) : 49 - 74
  • [30] A SECOND DERIVATIVE SQP METHOD: GLOBAL CONVERGENCE
    Gould, Nicholas I. M.
    Robinson, Daniel P.
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) : 2023 - 2048