Variational supersymmetric approach to evaluate Fokker-Planck probability

被引:9
|
作者
Borges, G. R. P. [2 ]
Drigo Filho, Elso [1 ]
Ricotta, R. M. [3 ]
机构
[1] UNESP, IBILCE, Dept Fis, Inst Biociencias Letras & Ciencias Exatas, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] FEF, BR-15600000 Fernandopolis, SP, Brazil
[3] Univ Estadual Paulista, Fac Tecnol Sao Paulo, CEETEPS, BR-01124060 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Fokker-Planck equation; Bistable potential; Variational method; Supersymmetry; EQUATION;
D O I
10.1016/j.physa.2010.05.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we introduce a method to determine the time dependent probability density for the one-dimensional Fokker-Planck equation. The treatment is based in an analysis of the Schrodinger equation through the variational method associated to the formalism of supersymmetric quantum mechanics (SQM). The approach uses an ansatz for the superpotential which allows us to obtain the trial functions of the variational method. The hierarchy of effective Hamiltonians permits us to determine the variational eigenfunctions and energies of the excited states to the evaluation of the probability. The symmetric bistable potential is used to illustrate the approach whose results are compared with results obtained by the state-dependent diagonalization method and by direct numerical calculation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3892 / 3899
页数:8
相关论文
共 50 条
  • [31] A unified approach for the solution of the Fokker-Planck equation
    Wei, GW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (27): : 4935 - 4953
  • [32] FOKKER-PLANCK APPROACH TO QUANTUM TRANSPORT STATISTICS - CALCULATION OF LIMITING PROBABILITY-DISTRIBUTIONS
    ENDESFELDER, D
    KRAMER, B
    PHYSICAL REVIEW E, 1993, 48 (05) : R3225 - R3228
  • [33] Evaluation of the Fokker-Planck Probability by Asymptotic Taylor Expansion Method
    Firat, Kenan
    Ozer, Okan
    PROCEEDINGS OF THE TURKISH PHYSICAL SOCIETY 32ND INTERNATIONAL PHYSICS CONGRESS (TPS32), 2017, 1815
  • [34] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [35] Existence of periodic probability solutions to Fokker-Planck equations with applications
    Ji, Min
    Qi, Weiwei
    Shen, Zhongwei
    Yi, Yingfei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (11)
  • [36] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [37] VARIATIONAL FORMULATION FOR THE FOKKER-PLANCK KINETIC-EQUATION IN EQUILIBRIUM PROBLEMS
    TESSAROTTO, M
    ASTERISQUE, 1984, (118) : 255 - 265
  • [38] Dynamical systems in the variational formulation of the Fokker-Planck equation by the Wasserstein metric
    Mikami, T
    APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 42 (02): : 203 - 227
  • [39] Numerical approach to Fokker-Planck equations for Brownian motors
    Kostur, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (09): : 1157 - 1176
  • [40] A semianalytic meshless approach to the transient Fokker-Planck equation
    Kumar, Mrinal
    Chakravorty, Suman
    Junkins, John L.
    PROBABILISTIC ENGINEERING MECHANICS, 2010, 25 (03) : 323 - 331