Variational supersymmetric approach to evaluate Fokker-Planck probability

被引:9
|
作者
Borges, G. R. P. [2 ]
Drigo Filho, Elso [1 ]
Ricotta, R. M. [3 ]
机构
[1] UNESP, IBILCE, Dept Fis, Inst Biociencias Letras & Ciencias Exatas, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] FEF, BR-15600000 Fernandopolis, SP, Brazil
[3] Univ Estadual Paulista, Fac Tecnol Sao Paulo, CEETEPS, BR-01124060 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Fokker-Planck equation; Bistable potential; Variational method; Supersymmetry; EQUATION;
D O I
10.1016/j.physa.2010.05.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we introduce a method to determine the time dependent probability density for the one-dimensional Fokker-Planck equation. The treatment is based in an analysis of the Schrodinger equation through the variational method associated to the formalism of supersymmetric quantum mechanics (SQM). The approach uses an ansatz for the superpotential which allows us to obtain the trial functions of the variational method. The hierarchy of effective Hamiltonians permits us to determine the variational eigenfunctions and energies of the excited states to the evaluation of the probability. The symmetric bistable potential is used to illustrate the approach whose results are compared with results obtained by the state-dependent diagonalization method and by direct numerical calculation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3892 / 3899
页数:8
相关论文
共 50 条
  • [21] Exact solutions of the Fokker-Planck equation from an nth order supersymmetric quantum mechanics approach
    Schulze-Halberg, Axel
    Morales Rivas, Jesus
    Pena Gil, Jose Juan
    Garcia-Ravelo, Jesus
    Roy, Pinaki
    PHYSICS LETTERS A, 2009, 373 (18-19) : 1610 - 1615
  • [22] Dynamic force spectroscopy: a Fokker-Planck approach
    Dudko, OK
    Filippov, AE
    Klafter, J
    Urbakh, M
    CHEMICAL PHYSICS LETTERS, 2002, 352 (5-6) : 499 - 504
  • [23] EDWARDS FOKKER-PLANCK APPROACH AND KOLMOGOROVS SPECTRUM
    YOSHIZAWA, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 40 (05) : 1498 - 1503
  • [24] Fokker-Planck approach to the microscopic diffusion theory
    Zaporozhets', T.V.
    Gusak, A.M.
    Metal Physics and Advanced Technologies, 2001, 19 (02): : 203 - 209
  • [25] A Fokker-Planck approach to control collective motion
    Roy, Souvik
    Annunziato, Mario
    Borzi, Alfio
    Klingenberg, Christian
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 69 (02) : 423 - 459
  • [26] The Fokker-Planck Equation for the System "Brownian Particle in Thermostat" Based on the Presented Probability Approach
    Hubal, H. M.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2010, 6 (01) : 48 - 55
  • [27] Fokker-Planck equation for Boltzmann-type and active particles: Transfer probability approach
    Trigger, SA
    PHYSICAL REVIEW E, 2003, 67 (04):
  • [28] Variational perturbation theory for Fokker-Planck equation with nonlinear drift
    Dreger, J
    Pelster, A
    Hamprecht, B
    EUROPEAN PHYSICAL JOURNAL B, 2005, 45 (03): : 355 - 368
  • [29] Noise on resistive switching: a Fokker-Planck approach
    Patterson, G. A.
    Grosz, D. F.
    Fierens, P. I.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [30] A perturbative approach to a class of Fokker-Planck equations
    Ho, Choon-Lin
    Dai, Yan-Min
    MODERN PHYSICS LETTERS B, 2008, 22 (07): : 475 - 481