Variational supersymmetric approach to evaluate Fokker-Planck probability

被引:9
|
作者
Borges, G. R. P. [2 ]
Drigo Filho, Elso [1 ]
Ricotta, R. M. [3 ]
机构
[1] UNESP, IBILCE, Dept Fis, Inst Biociencias Letras & Ciencias Exatas, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] FEF, BR-15600000 Fernandopolis, SP, Brazil
[3] Univ Estadual Paulista, Fac Tecnol Sao Paulo, CEETEPS, BR-01124060 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Fokker-Planck equation; Bistable potential; Variational method; Supersymmetry; EQUATION;
D O I
10.1016/j.physa.2010.05.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we introduce a method to determine the time dependent probability density for the one-dimensional Fokker-Planck equation. The treatment is based in an analysis of the Schrodinger equation through the variational method associated to the formalism of supersymmetric quantum mechanics (SQM). The approach uses an ansatz for the superpotential which allows us to obtain the trial functions of the variational method. The hierarchy of effective Hamiltonians permits us to determine the variational eigenfunctions and energies of the excited states to the evaluation of the probability. The symmetric bistable potential is used to illustrate the approach whose results are compared with results obtained by the state-dependent diagonalization method and by direct numerical calculation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3892 / 3899
页数:8
相关论文
共 50 条
  • [1] VARIATIONAL APPROACH IN STUDIES WITH FOKKER-PLANCK EQUATIONS
    HASEGAWA, H
    PROGRESS OF THEORETICAL PHYSICS, 1977, 58 (01): : 128 - 146
  • [2] Supersymmetric Fokker-Planck strict isospectrality
    Rosu, HC
    PHYSICAL REVIEW E, 1997, 56 (02): : 2269 - 2271
  • [3] Supersymmetric Fokker-Planck strict isospectrality
    Rosu, Haret C.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 56 (02):
  • [4] The variational formulation of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) : 1 - 17
  • [5] Variational schemes in the Fokker-Planck equation
    Blum, T
    McKane, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09): : 1859 - 1872
  • [6] Interpolating supersymmetric pair of Fokker-Planck equations
    Ho, Choon-Lin
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [7] VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION WITH DECAY: A PARTICLE APPROACH
    Peletier, Mark A.
    Renger, D. R. Michiel
    Veneroni, Marco
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (05)
  • [8] VARIATIONAL METHODS FOR THE KINETIC FOKKER-PLANCK EQUATION
    Albritton, Dallas
    Armstrong, Scott
    Mourrat, Jean-Christophe
    Movack, Matthew
    ANALYSIS & PDE, 2024, 17 (06):
  • [9] VARIATIONAL METHOD FOR SOLVING FOKKER-PLANCK EQUATIONS
    HASEGAWA, H
    PHYSICS LETTERS A, 1977, 60 (03) : 171 - 172
  • [10] Probability flow solution of the Fokker-Planck equation
    Boffi, Nicholas M.
    Vanden-Eijnden, Eric
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):