Study of MOS-gated strained-Si Buried Channel Field Effect Transistors

被引:0
|
作者
Fobelets, K. [1 ]
Velazquez-Perez, J. E. [2 ]
Hackbarth, T. [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2BT, England
[2] Univ Salamanca, Dept Fis Aplicada, Salamanca 37008, Spain
[3] Daimler Chrysler AG, Res Ctr Ulm, D-89081 Ulm, Germany
基金
英国工程与自然科学研究理事会;
关键词
Strained-Si; SiGe virtual substrate; Buried channel FET; MOS-gating;
D O I
10.1080/03772063.2007.10876139
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
MOS-gated strained-Si modulation doped Field Effect Transistors (MOSMODFETs) traditionally suffer from parallel conduction causing degradation of the device performance below that of the Si control fabricated in the same batch. We present a MOSMODFET in which parallel conduction is avoided through the use of ultra-thin modulation doped layers and TMAH etching to remove the top SI parasitic layer. A low thermal budget and deposited oxides are used to conserve material integrity. This approach has lead to MOSMODFETs that show RF performance improvement over the Si control MOSFET and improved DC operation over a temperature range from 10K to 300K. The influence of the low temperature processing on the characteristics is an increase from 0.3 to 1.2 Omega mm of the contact resistance, and the deposited oxide increases the interface state density.
引用
收藏
页码:253 / 262
页数:10
相关论文
共 50 条
  • [31] Short channel effect improved strained-Si:C-source/drain PMOSFETs
    Lee, M. H.
    Chang, S. T.
    Maikap, S.
    Shen, K. -W.
    Wang, W. -C.
    APPLIED SURFACE SCIENCE, 2008, 254 (19) : 6144 - 6146
  • [32] Reliability study of ultra-thin gate oxides on strained-Si/SiGe MOS structures
    Varzgar, John B.
    Kanoun, Mehdi
    Uppal, Suresh
    Chattopadhyay, Sanatan
    Tsang, Yuk Lun
    Escobedo-Cousins, Enrique
    Olsen, Sarah H.
    O'Neill, Anthony
    Hellstrom, Per-Erik
    Edholm, Jonas
    Ostling, Mikael
    Lyutovich, Klara
    Oehme, Michael
    Kasper, Erich
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 135 (03): : 203 - 206
  • [33] Two-dimensional drift-diffusion simulation of superficial strained-Si/Si1-xGex channel metal-oxide-semiconductor field-effect transistors
    Roldan, JB
    Gamiz, F
    Lopez-Villanueva, JA
    Cartujo, P
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (03): : 1538 - 1540
  • [34] Limited number of carriers transferred to the strained-Si channel in the SiGe/Si/SiGe modulation-doped field-effect transistor
    Sugii, N
    Nakagawa, K
    Yamaguchi, S
    Park, SK
    Miyao, M
    THIN SOLID FILMS, 2000, 369 (1-2) : 362 - 365
  • [35] Optimizing fabrication of buried oxide channel field effect transistors
    Schrott, AG
    Misewich, JA
    Copel, M
    Abraham, DW
    Neumayer, DA
    MATERIALS SCIENCE OF NOVEL OXIDE-BASED ELECTRONICS, 2000, 623 : 25 - 30
  • [36] Analysis of Strained-Si Device including Quantum Effect
    Tanabe, Ryo
    Yamasaki, Takahiro
    Ashizawa, Yoshio
    Oka, Hideki
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2004, 3 (3-4) : 387 - 391
  • [37] Analysis of Strained-Si Device including Quantum Effect
    Ryo Tanabe
    Takahiro Yamasaki
    Yoshio Ashizawa
    Hideki Oka
    Journal of Computational Electronics, 2004, 3 : 387 - 391
  • [38] Effect of Strained-Si Layer Thickness on Dislocation Distribution and SiGe Relaxation in Thin Buffer Layer Strained-Si/SiGe Heterostructures
    Lu, Jinggang
    Rozgonyi, George
    Seacrist, Mike
    SIGE, GE, AND RELATED COMPOUNDS 3: MATERIALS, PROCESSING, AND DEVICES, 2008, 16 (10): : 293 - +
  • [39] Strained-si heterostructure field effect devices: Strain-engineering in CMOS technology
    Maiti, C. K.
    PROCEEDINGS OF THE 2007 INTERNATIONAL WORKSHOP ON THE PHYSICS OF SEMICONDUCTOR DEVICES: IWPSD-2007, 2007, : 52 - 56
  • [40] ELECTRON-MOBILITY ENHANCEMENT IN STRAINED-SI N-TYPE METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS
    WELSER, J
    HOYT, JL
    GIBBONS, JF
    IEEE ELECTRON DEVICE LETTERS, 1994, 15 (03) : 100 - 102