DISCRIMINATIVE DEEP BELIEF NETWORKS FOR IMAGE CLASSIFICATION

被引:20
|
作者
Zhou, Shusen [1 ]
Chen, Qingcai [1 ]
Wang, Xiaolong [1 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen, Peoples R China
关键词
Discriminative Deep Belief Networks (DDBN); semi-supervised learning; image classification; deep learning; ALGORITHM;
D O I
10.1109/ICIP.2010.5649922
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a novel semi-supervised learning algorithm called Discriminative Deep Belief Networks (DDBN), to address the image classification problem with limited labeled data. We first construct a new deep architecture for classification using a set of Restricted Boltzmann Machines (RBM). The parameter space of the deep architecture is initially determined using labeled data together with abundant of unlabeled data, by greedy layerwise unsupervised learning. Then, we fine-tune the whole deep networks using an exponential loss function to maximize the separability of the labeled data, by gradient-descent based supervised learning. Experiments on the artificial dataset and real image datasets show that DDBN outperforms most semi-supervised algorithm and deep learning techniques, especially for the hard classification tasks.
引用
收藏
页码:1561 / 1564
页数:4
相关论文
共 50 条
  • [31] Breast cancer classification using deep belief networks
    Abdel-Zaher, Ahmed M.
    Eldeib, Ayman M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 46 : 139 - 144
  • [32] Deep Belief Networks with Feature Selection for Sentiment Classification
    Ruangkanokmas, Patrawut
    Achalakul, Tiranee
    Akkarajitsakul, Khajonpong
    2016 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION (ISMS), 2016, : 9 - 14
  • [33] Detection of microcalcification clusters regions in mammograms combining discriminative deep belief networks
    Song L.
    Wei X.
    Wang Q.
    Wang Y.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2021, 38 (02): : 268 - 275
  • [34] Deep Brain Stimulation Signal Classification using Deep Belief Networks
    Guillen-Rondon, Pablo
    Robinson, Melvin D.
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 155 - 158
  • [35] Discriminative Alignment of Projected Belief Networks
    Baggenstoss, Paul M.
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1963 - 1967
  • [36] Discriminative Deep Belief Network for Indoor Environment Classification Using Global Visual Features
    Nabila Zrira
    Haris Ahmad Khan
    El Houssine Bouyakhf
    Cognitive Computation, 2018, 10 : 437 - 453
  • [37] Discriminative Deep Belief Network for Indoor Environment Classification Using Global Visual Features
    Zrira, Nabila
    Khan, Haris Ahmad
    Bouyakhf, El Houssine
    COGNITIVE COMPUTATION, 2018, 10 (03) : 437 - 453
  • [38] An Improved Bilinear Deep Belief Network Algorithm for Image Classification
    Niu Jie
    Bu Xiongzhu
    Li Zhong
    Wang Yao
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 189 - 192
  • [39] Efficient Deep Belief Network Based Hyperspectral Image Classification
    Mughees, Atif
    Tao, Linmi
    IMAGE AND GRAPHICS (ICIG 2017), PT III, 2017, 10668 : 347 - 357
  • [40] Learning Multi-Instance Deep Discriminative Patterns for Image Classification
    Tang, Peng
    Wang, Xinggang
    Feng, Bin
    Liu, Wenyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) : 3385 - 3396