DISCRIMINATIVE DEEP BELIEF NETWORKS FOR IMAGE CLASSIFICATION

被引:20
|
作者
Zhou, Shusen [1 ]
Chen, Qingcai [1 ]
Wang, Xiaolong [1 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen, Peoples R China
关键词
Discriminative Deep Belief Networks (DDBN); semi-supervised learning; image classification; deep learning; ALGORITHM;
D O I
10.1109/ICIP.2010.5649922
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a novel semi-supervised learning algorithm called Discriminative Deep Belief Networks (DDBN), to address the image classification problem with limited labeled data. We first construct a new deep architecture for classification using a set of Restricted Boltzmann Machines (RBM). The parameter space of the deep architecture is initially determined using labeled data together with abundant of unlabeled data, by greedy layerwise unsupervised learning. Then, we fine-tune the whole deep networks using an exponential loss function to maximize the separability of the labeled data, by gradient-descent based supervised learning. Experiments on the artificial dataset and real image datasets show that DDBN outperforms most semi-supervised algorithm and deep learning techniques, especially for the hard classification tasks.
引用
收藏
页码:1561 / 1564
页数:4
相关论文
共 50 条
  • [21] Learning Discriminative Shrinkage Deep Networks for Image Deconvolution
    Kuo, Pin-Hung
    Pan, Jinshan
    Chien, Shao-Yi
    Yang, Ming-Hsuan
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 217 - 234
  • [22] A DIVERSIFIED DEEP BELIEF NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhong, P.
    Gong, Z. Q.
    Schonlieb, C.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 443 - 449
  • [23] Application of Alternating Deep Belief Network in Image Classification
    Shi, Tao
    Zhang, Chunlei
    Li, Fujin
    Liu, Weimin
    Huo, Meijie
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 1853 - 1856
  • [24] Image Blur Classification and Parameter Identification using Two-stage Deep Belief Networks
    Yan, Ruomei
    Shao, Ling
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
  • [25] Discriminative Robust Deep Dictionary Learning for Hyperspectral Image Classification
    Singhal, Vanika
    Aggarwal, Hemant K.
    Tariyal, Snigdha
    Majumdar, Angshul
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09): : 5274 - 5283
  • [26] Partial Discharge Classification Using Deep Belief Networks
    Karimi, Masoud
    Majidi, Mehrdad
    Etezadi-Amoli, Mehdi
    Oskuoee, Mohammad
    2018 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2018,
  • [27] Classification of Bearing Data Based on Deep Belief Networks
    Zhang, Ran
    Wu, Lifeng
    Fu, Xiaohui
    Yao, Beibei
    2016 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHENGDU), 2016,
  • [28] Experiments in constructing belief networks for image classification systems
    Paek, S
    Chang, SF
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2000, : 46 - 49
  • [29] Deep Belief Networks for Automatic Music Genre Classification
    Yang, Xiaohong
    Chen, Qingcai
    Zhou, Shusen
    Wang, Xiaolong
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2444 - 2447
  • [30] Person/Vehicle Classification based on Deep Belief Networks
    Sun, Ning
    Han, Guang
    Du, Kun
    Liu, Jixin
    Li, Xiaofei
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 113 - 117