Propagation of KPP equations with advection in one-dimensional almost periodic media and its symmetry

被引:6
|
作者
Liang, Xing [1 ]
Zhou, Tao [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Anhui Univ, Sch Math Sci, Ctr Pure Math, Hefei 230601, Anhui, Peoples R China
关键词
Almost periodic media; Spreading speed; Symmetry of propagation; Generalized principal eigenvalue; SPREADING SPEEDS; TRAVELING-WAVES; PRINCIPAL EIGENVALUE; FRONT PROPAGATION; DIFFUSION; EXISTENCE; MODEL;
D O I
10.1016/j.aim.2022.108568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Reaction-diffusion equations in unbounded domain are used to study the propagation phenomena of biological species. When propagation can happen in different directions, an interesting question arises: In which direction is propagation the fastest?For the one-dimensional KPP equation in almost periodic media with advection: {ut=(a(x)ux)(x)+b(x)ux+f(x,u)t > 0,x is an element of R, u(0,x)=u0(x)is an element of[0,1] is nonzero with compact support, (?) let omega(+) and omega(-) be the spreading speeds of (?) in the positive and negative directions respectively. The above question becomes this: Which is larger, omega(+) or omega(-)? In this paper, after establishing the existence of omega(+) and omega(-), we give a complete answer to this question: sgn(omega(-)-omega(+))=sgn(lim(x ->infinity)?1/x integral 0xb(s)/a(s)ds). (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Flame propagation in one-dimensional stationary ergodic media
    Caffarelli, L. A.
    Lee, K. -A.
    Mellet, A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (01): : 155 - 169
  • [42] Propagation of electromagnetic waves in one-dimensional quasiperiodic media
    Badalyan, V. D.
    ASTROPHYSICS, 2006, 49 (04) : 538 - 542
  • [43] One-dimensional pulse propagation in a nonlinear elastic media
    Meurer, T
    Qu, JM
    Jacobs, LJ
    ADVANCED NONDESTRUCTIVE EVALUATION FOR STRUCTURAL AND BIOLOGICAL HEALTH MONITORING, 2001, 4335 : 202 - 209
  • [44] Propagation of electromagnetic waves in one-dimensional quasiperiodic media
    V. D. Badalyan
    Astrophysics, 2006, 49 : 538 - 542
  • [45] On beam propagation in anisotropic media: one-dimensional analysis
    Alberucci, Alessandro
    Assanto, Gaetano
    OPTICS LETTERS, 2011, 36 (03) : 334 - 336
  • [46] Ultrasonic pulse propagation in inhomogeneous one-dimensional media
    Cretu, N
    Delsanto, PP
    Nita, G
    Rosca, C
    Scalerandi, M
    Sturzu, I
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 104 (01): : 57 - 63
  • [47] Almost-periodic bifurcations for one-dimensional degenerate vector fields
    Si, Wen
    Xu, Xiaodan
    Si, Jianguo
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (02): : 242 - 258
  • [48] ALMOST PERIODIC-SOLUTIONS OF ONE DIMENSIONAL WAVE-EQUATIONS WITH PERIODIC COEFFICIENTS
    YAMAGUCHI, M
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1989, 29 (03): : 463 - 487
  • [49] Pulse propagation in finite linear one-dimensional periodic structures
    Torrese, G
    Schriemer, HP
    Cada, M
    APPLICATIONS OF PHOTONIC TECHNOLOGY, CLOSING THE GAP BETWEEN THEORY, DEVELOPMENT, AND APPLICATION, PT 1 AND 2, 2004, 5577 : 568 - 578
  • [50] Wave propagation in a one-dimensional randomly perturbed periodic medium
    Godin, Y. A.
    Molchanov, S.
    Vainberg, B.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2007, 17 (03) : 381 - 395