Propagation of KPP equations with advection in one-dimensional almost periodic media and its symmetry

被引:6
|
作者
Liang, Xing [1 ]
Zhou, Tao [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Anhui Univ, Sch Math Sci, Ctr Pure Math, Hefei 230601, Anhui, Peoples R China
关键词
Almost periodic media; Spreading speed; Symmetry of propagation; Generalized principal eigenvalue; SPREADING SPEEDS; TRAVELING-WAVES; PRINCIPAL EIGENVALUE; FRONT PROPAGATION; DIFFUSION; EXISTENCE; MODEL;
D O I
10.1016/j.aim.2022.108568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Reaction-diffusion equations in unbounded domain are used to study the propagation phenomena of biological species. When propagation can happen in different directions, an interesting question arises: In which direction is propagation the fastest?For the one-dimensional KPP equation in almost periodic media with advection: {ut=(a(x)ux)(x)+b(x)ux+f(x,u)t > 0,x is an element of R, u(0,x)=u0(x)is an element of[0,1] is nonzero with compact support, (?) let omega(+) and omega(-) be the spreading speeds of (?) in the positive and negative directions respectively. The above question becomes this: Which is larger, omega(+) or omega(-)? In this paper, after establishing the existence of omega(+) and omega(-), we give a complete answer to this question: sgn(omega(-)-omega(+))=sgn(lim(x ->infinity)?1/x integral 0xb(s)/a(s)ds). (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Signal propagation and failure in one-dimensional FitzHugh-Nagumo equations with periodic stimuli
    Yanagita, T
    Nishiura, Y
    Kobayashi, R
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [22] ON THE EQUATIONS OF ONE-DIMENSIONAL UNSTEADY FLAME PROPAGATION
    LARROUTUROU, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (03): : 55 - 58
  • [23] Almost automorphically-forced flows on S~1 or R in one-dimensional almost periodic semilinear heat equations
    Wenxian Shen
    Yi Wang
    Dun Zhou
    ScienceChina(Mathematics), 2022, 65 (09) : 1875 - 1894
  • [24] Almost automorphically-forced flows on S1 or ℝ in one-dimensional almost periodic semilinear heat equations
    Wenxian Shen
    Yi Wang
    Dun Zhou
    Science China Mathematics, 2022, 65 : 1875 - 1894
  • [25] ONE-DIMENSIONAL SCHRODINGER-EQUATION WITH AN ALMOST PERIODIC POTENTIAL
    OSTLUND, S
    PANDIT, R
    RAND, D
    SCHELLNHUBER, HJ
    SIGGIA, ED
    PHYSICAL REVIEW LETTERS, 1983, 50 (23) : 1873 - 1876
  • [26] Nonlinear Propagation of Light in One-Dimensional Periodic Structures
    R. H. Goodman
    M. I. Weinstein
    P. J. Holmes
    Journal of Nonlinear Science, 2001, 11 : 123 - 168
  • [27] Nonlinear propagation of light in one-dimensional periodic structures
    Goodman, RH
    Weinstein, MI
    Holmes, PJ
    JOURNAL OF NONLINEAR SCIENCE, 2001, 11 (02) : 123 - 168
  • [28] Tarahertz wave propagation in one-dimensional periodic dielectrics
    Amer, N
    Hurlbut, WC
    Norton, BJ
    Lee, YS
    Etringer, SL
    Paul, BK
    APPLIED OPTICS, 2006, 45 (08) : 1857 - 1860
  • [29] Front propagation for integro-differential KPP reaction-diffusion equations in periodic media
    Souganidis, Panagiotis E.
    Tarfulea, Andrei
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (04):
  • [30] KPP FRONTS IN A ONE-DIMENSIONAL RANDOM DRIFT
    Nolen, James
    Xin, Jack
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (02): : 421 - 442