Noether's problem for dihedral 2-groups

被引:17
|
作者
Chu, H [1 ]
Hu, SJ
Kang, MC
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
[2] Tamkang Univ, Dept Math, Taipei, Taiwan
关键词
rationality; Noether's problem; generic Galois extension; generic polynomials; dihedral groups;
D O I
10.1007/s00014-003-0783-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be any field and G be a finite group. Let G act on the rational function field K(x(g) : g is an element of G) by K-automorphisms defined by g (.) x(h) = x(gh) for any g, h is an element of G. Denote by K(G) the fixed field K(x(g) : g is an element of G)(G). Noether's problem asks whether K(G) is rational (= purely transcendental) over K. We shall prove that K(G) is rational over K if G is the dihedral group (resp. quasi-dihedral group, modular group) of order 16. Our result will imply the existence of the generic Galois extension and the existence of the generic polynomial of the corresponding group.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
  • [31] NONCOMMUTATIVE NOETHER'S PROBLEM FOR COMPLEX REFLECTION GROUPS
    Eshmatov, Farkhod
    Futorny, Vyacheslav
    Ovsienko, Sergiy
    Schwarz, Joao Fernando
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (12) : 5043 - 5052
  • [32] On Noether's problem for cyclic groups of prime order
    Hoshi, Akinari
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2015, 91 (03) : 39 - 44
  • [33] Burnside problem for measure preserving groups and for 2-groups of toral homeomorphisms
    Nancy Guelman
    Isabelle Liousse
    Geometriae Dedicata, 2014, 168 : 387 - 396
  • [34] Fuchs' problem for dihedral groups
    Chebolu, Sunil K.
    Lockridge, Keir
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (04) : 971 - 982
  • [35] Burnside problem for measure preserving groups and for 2-groups of toral homeomorphisms
    Guelman, Nancy
    Liousse, Isabelle
    GEOMETRIAE DEDICATA, 2014, 168 (01) : 387 - 396
  • [36] On 2-groups as Galois groups
    Ledet, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (06): : 1253 - 1273
  • [37] Automorphism groups of 2-groups
    Eick, Bettina
    JOURNAL OF ALGEBRA, 2006, 300 (01) : 91 - 101
  • [38] On Schur 2-Groups
    Muzychuk M.E.
    Ponomarenko I.N.
    Journal of Mathematical Sciences, 2016, 219 (4) : 565 - 594
  • [39] Classes of piecewise quasiaflne transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups
    Pogorelov, Boris A.
    Pudovkina, Marina A.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2024, 34 (01): : 15 - 27
  • [40] Noether's problem for transitive permutation groups of degree 6
    Hashimoto, Kiichiro
    Tsunogai, Hiroshi
    GALOIS-TEICHMUELLER THEORY AND ARITHMETIC GEOMETRY, 2012, 63 : 189 - 220