Noether's problem for dihedral 2-groups

被引:17
|
作者
Chu, H [1 ]
Hu, SJ
Kang, MC
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
[2] Tamkang Univ, Dept Math, Taipei, Taiwan
关键词
rationality; Noether's problem; generic Galois extension; generic polynomials; dihedral groups;
D O I
10.1007/s00014-003-0783-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be any field and G be a finite group. Let G act on the rational function field K(x(g) : g is an element of G) by K-automorphisms defined by g (.) x(h) = x(gh) for any g, h is an element of G. Denote by K(G) the fixed field K(x(g) : g is an element of G)(G). Noether's problem asks whether K(G) is rational (= purely transcendental) over K. We shall prove that K(G) is rational over K if G is the dihedral group (resp. quasi-dihedral group, modular group) of order 16. Our result will imply the existence of the generic Galois extension and the existence of the generic polynomial of the corresponding group.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
  • [21] ON THE TORSION UNITS IN INTEGRAL GROUP-RINGS OF DIHEDRAL 2-GROUPS
    ZIMMERMANN, A
    JOURNAL OF ALGEBRA, 1995, 175 (01) : 122 - 136
  • [22] GBRDs with block size three over 2-groups, semi-dihedral groups and nilpotent groups
    Abel, R. Julian R.
    Combe, Diana
    Nelson, Adrian M.
    Palmer, William D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [23] Noether's problem on semidirect product groups
    Chu, Huah
    Huang, Shang
    JOURNAL OF ALGEBRA, 2017, 491 : 314 - 342
  • [24] Noether's problem for groups of order 243
    Chu, Huah
    Hoshi, Akinari
    Hu, Shou-Jen
    Kang, Ming-chang
    JOURNAL OF ALGEBRA, 2015, 442 : 233 - 259
  • [25] NOETHER'S PROBLEM AND UNRAMIFIED BRAUER GROUPS
    Hoshi, Akinari
    Kang, Ming-Chang
    Kunyavskii, Boris E.
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (04) : 689 - 713
  • [26] Noether's problem for groups of order 32
    Chu, Huah
    Hu, Shou-Jen
    Kang, Ming-chang
    Prokhorov, Y. G.
    JOURNAL OF ALGEBRA, 2008, 320 (07) : 3022 - 3035
  • [27] A SOLUTION OF THE RESTRICTED BURNSIDE PROBLEM FOR 2-GROUPS
    ZELMANOV, EI
    MATHEMATICS OF THE USSR-SBORNIK, 1992, 72 (02): : 543 - 565
  • [28] Noether's problem for cyclic groups of prime order
    Kang, Ming-chang
    ARCHIV DER MATHEMATIK, 2018, 110 (01) : 1 - 8
  • [29] Noether’s problem for cyclic groups of prime order
    Ming-chang Kang
    Archiv der Mathematik, 2018, 110 : 1 - 8
  • [30] Noether's problem for metacyclic p-groups
    Kang, MC
    ADVANCES IN MATHEMATICS, 2006, 203 (02) : 554 - 567