Periodic solutions of symmetric Kepler perturbations and applications

被引:11
|
作者
Alberti, Angelo [1 ]
Vidal, Claudio [2 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, Cidade Univ Prof Jose Aloisio Campos, Sao Cristovoao, SE, Brazil
[2] Univ Bio Bio, Fac Ciencias, GISDA, Dept Matemat, Casilla 5-C, Concepcion, Viii Region, Chile
关键词
Perturbation theory; Symmetries; Continuation method; Delaunay-Poincare variables; Circular Solutions; DYNAMICS; SYSTEMS; ORBITS; MODEL;
D O I
10.1080/14029251.2016.1204721
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of several families of symmetric periodic solutions as continuation of circular orbits of the Kepler problem for certain symmetric differentiable perturbations using an appropriate set of Poincare-Delaunay coordinates which are essential in our approach. More precisely, we try separately two situations in an independent way, namely, when the unperturbed part corresponds to a Kepler problem in inertial cartesian coordinates and when it corresponds to a Kepler problem in rotating coordinates on R-3. Moreover, the characteristic multipliers of the symmetric periodic solutions are characterized. The planar case arises as a particular case. Finally, we apply these results to study the existence and stability of periodic orbits of the Matese-Whitman Hamiltonian and the generalized Stormer model.
引用
收藏
页码:439 / 465
页数:27
相关论文
共 50 条
  • [11] First kind symmetric periodic solutions and their stability for the Kepler problem and anisotropic Kepler problem plus generalized anisotropic perturbation
    Alberti, Angelo
    Vidal, Claudio
    Nonlinear Analysis: Real World Applications, 2021, 58
  • [12] ON PERTURBATIONS OF PERIODIC SOLUTIONS
    SIBUYA, Y
    JOURNAL OF MATHEMATICS AND MECHANICS, 1960, 9 (05): : 771 - 782
  • [13] Second-kind symmetric periodic orbits for planar perturbed Kepler problems and applications
    Alberti, Angelo
    Vidal, Claudio
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (03) : 961 - 992
  • [14] PERIODIC ORBITS OF THE SPATIAL ANISOTROPIC KEPLER PROBLEM WITH ANISOTROPIC PERTURBATIONS
    Li, Mengyuan
    Liu, Qihuai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [15] PERIODIC SOLUTIONS TO A PERTURBED RELATIVISTIC KEPLER PROBLEM
    Boscaggin, Alberto
    Dambrosio, Walter
    Feltrin, Guglielmo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (05) : 5813 - 5834
  • [16] PERIODIC SOLUTIONS TO A FORCED KEPLER PROBLEM IN THE PLANE
    Boscaggin, Alberto
    Dambrosio, Walter
    Papini, Duccio
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (01) : 301 - 314
  • [17] ON EXISTENCE OF PERIODIC SOLUTIONS FOR KEPLER TYPE PROBLEMS
    Amster, Pablo
    Haddad, Julian
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 48 (02) : 465 - 476
  • [18] Periodic solutions and perturbations of dynamical systems
    Nenov, SI
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (12) : 2717 - 2732
  • [19] Periodic solutions to relativistic Kepler problems: a variational approach
    Boscaggin, Alberto
    Dambrosio, Walter
    Papini, Duccio
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (03) : 1465 - 1504
  • [20] Periodic solutions for planar autonomous systems with nonsmooth periodic perturbations
    Makarenkov, Oleg
    Nistri, Paolo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1401 - 1417