Trajectory planning of multiple coordinating robots using genetic algorithms

被引:16
|
作者
Sun, SD
Morris, AS
Zalzala, AMS
机构
关键词
robotics; genetic algorithms; trajectory planning; coordination; multiple robots;
D O I
10.1017/S0263574700019147
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The paper focuses on the problem of trajectory planning of multiple coordinating robots. When multiple robots collaborate to manipulate one object, a redundant system is formed. There are a number of trajectories that the system can follow. These can be described in Cartesian coordinate space by an nth order polynomial. This paper presents an optimisation method based on the Genetic Algorithms (GAs) which chooses the parameters of the polynomial, such that the execution time and the drive torques for the robot joints are minimized. With the robot's dynamic constraints taken into account, the pitimised trajectories are realisable. A case study with two planar-moving robots, each having three degrees of freedom, shows that the method is effective.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 50 条
  • [31] Path Planning for Multiple Unmanned Aerial Vehicles Using Genetic Algorithms
    Li, Howard
    Fu, Yi
    Elgazzar, Khalid
    Paull, Liam
    2009 IEEE 22ND CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1 AND 2, 2009, : 913 - 916
  • [32] Validation of Minimum Time-Jerk Algorithms for Trajectory Planning of Industrial Robots
    Gasparetto, A.
    Lanzutti, A.
    Vidoni, R.
    Zanotto, V.
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2011, 3 (03):
  • [33] TRAJECTORY PLANNING FOR MANIPULATORS AND ROBOTS
    RAKOTOARISOA, RD
    VERCRAENE, F
    COUTURIER, P
    ESQUIROL, P
    BETEMPS, M
    JUTARD, A
    RAIRO-AUTOMATIQUE-PRODUCTIQUE INFORMATIQUE INDUSTRIELLE-AUTOMATIC CONTROL PRODUCTION SYSTEMS, 1991, 25 (03): : 229 - 246
  • [34] Trajectory planning for multiple robots in bearing-only target localisation
    Leung, C
    Huang, SD
    Dissanayake, G
    Furukawa, T
    2005 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2005, : 2312 - 2317
  • [35] Optimization-Based Trajectory Planning for Multiple Robots in Unstructured Environments
    Zheng, Lixiang
    Zhang, Gang
    Chai, Zhangduan
    Niu, Jie
    Lin, Chengran
    2024 8TH INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION SCIENCES, ICRAS 2024, 2024, : 26 - 31
  • [36] Trajectory Planning and Obstacle Avoidance Control of Redundant Robots Using Differential Evolution and Particle Swarm Optimization Algorithms
    Warnakulasooriya, Sujan
    Ponnambalam, S. G.
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, SEMCCO 2014, 2015, 8947 : 596 - 605
  • [37] Point-to-Point trajectory planning of flexible redundant robot manipulators using genetic algorithms
    Yue, SG
    Henrich, D
    Xu, WL
    Tso, SK
    ROBOTICA, 2002, 20 : 269 - 280
  • [38] Multi-robots Trajectory Planning Using a Novel GA
    Santana, Killdary A.
    Pinto, Vandilberto P.
    Souza, Darielson A.
    INFORMATION TECHNOLOGY AND SYSTEMS, ICITS 2020, 2020, 1137 : 353 - 363
  • [39] Irrigation planning using genetic algorithms
    Srinivasa Raju K.
    Nagesh Kumar D.
    Water Resources Management, 2004, 18 (02) : 163 - 176
  • [40] Coordinating multiple mobile robots for obstacle avoidance using cloud computing
    Song, Kai-Tai
    Sun, Yu-Xuan
    ASIAN JOURNAL OF CONTROL, 2021, 23 (03) : 1225 - 1236