Trajectory planning of multiple coordinating robots using genetic algorithms

被引:16
|
作者
Sun, SD
Morris, AS
Zalzala, AMS
机构
关键词
robotics; genetic algorithms; trajectory planning; coordination; multiple robots;
D O I
10.1017/S0263574700019147
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The paper focuses on the problem of trajectory planning of multiple coordinating robots. When multiple robots collaborate to manipulate one object, a redundant system is formed. There are a number of trajectories that the system can follow. These can be described in Cartesian coordinate space by an nth order polynomial. This paper presents an optimisation method based on the Genetic Algorithms (GAs) which chooses the parameters of the polynomial, such that the execution time and the drive torques for the robot joints are minimized. With the robot's dynamic constraints taken into account, the pitimised trajectories are realisable. A case study with two planar-moving robots, each having three degrees of freedom, shows that the method is effective.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 50 条
  • [21] Multiple setup PCB assembly planning using genetic algorithms
    Deo, S
    Javadpour, R
    Knapp, GM
    COMPUTERS & INDUSTRIAL ENGINEERING, 2002, 42 (01) : 1 - 16
  • [22] Path Planning for Mobile Robots Based on Genetic Algorithms
    Su, Jintao
    Li, Jianfeng
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 723 - 727
  • [23] Coordinating heterogeneous teams of robots using temporal symbolic planning
    Wurm, Kai M.
    Dornhege, Christian
    Nebel, Bernhard
    Burgard, Wolfram
    Stachniss, Cyrill
    AUTONOMOUS ROBOTS, 2013, 34 (04) : 277 - 294
  • [24] Coordinating heterogeneous teams of robots using temporal symbolic planning
    Kai M. Wurm
    Christian Dornhege
    Bernhard Nebel
    Wolfram Burgard
    Cyrill Stachniss
    Autonomous Robots, 2013, 34 : 277 - 294
  • [25] Comparing Path Planning Algorithms for Multiple Mobile Robots
    Okumus, Fatih
    Kocamaz, Adnan Fatih
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP), 2018,
  • [26] Design of optimal multiple-impulsive rendezvous trajectory using genetic algorithms
    Qi, Ying-Hong
    Cao, Xi-Bin
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2008, 40 (09): : 1345 - 1348
  • [27] Path planning for nonholonomic car-like mobile robots using genetic algorithms
    Cheng, Weiming
    Tang, Zhenmin
    Zhao, Chunxia
    Tang, Lei
    Guo, Zhibo
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 3183 - +
  • [28] Trajectory planning in cooperative robots using artificial vision
    Rubin-Alvarado, Abel A.
    Gutierrez-Arias, Jose E. M.
    Reyes-Cortes, Fernando
    Corona-Morales, Gregoria
    2020 32ND INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM), 2020, : 10 - 13
  • [29] Trajectory planning of mobile robots using DNA computing
    Kiguchi, K
    Watanabe, K
    Fukuda, T
    2001 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION: INTEGRATING INTELLIGENT MACHINES WITH HUMANS FOR A BETTER TOMORROW, 2001, : 380 - 385
  • [30] Multiple waypoint path planning for a mobile robot using genetic algorithms
    Davies, Trevor
    Jnifene, Amor
    PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2006, : 21 - +