Deep-Learning Detection of Cancer Metastases to the Brain on MRI

被引:78
|
作者
Zhang, Min [1 ]
Young, Geoffrey S. [1 ]
Chen, Huai [1 ,2 ]
Li, Jing [1 ,3 ]
Qin, Lei [4 ]
McFaline-Figueroa, J. Ricardo [5 ]
Reardon, David A. [4 ]
Cao, Xinhua [6 ]
Wu, Xian [7 ]
Xu, Xiaoyin [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
[2] Guangzhou Med Univ, Affiliated Hosp 1, Dept Radiol, Guangzhou, Guangdong, Peoples R China
[3] Zhengzhou Univ, Henan Canc Hosp, Affiliated Hosp, Dept Radiol, Zhengzhou, Henan, Peoples R China
[4] Harvard Med Sch, Dana Farber Canc Inst, Dept Radiol, Boston, MA 02115 USA
[5] Harvard Med Sch, Dana Farber Canc Inst, Ctr Neurooncol, Boston, MA 02115 USA
[6] Harvard Med Sch, Boston Childrens Hosp, Dept Radiol, Boston, MA 02115 USA
[7] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
基金
美国国家卫生研究院;
关键词
brain metastases; deep learning; Faster R-CNN; RUSBoost; COMPUTER-AIDED DETECTION; STEREOTACTIC RADIOSURGERY; WHOLE-BRAIN; TUMORS; MANAGEMENT; CLASSIFICATION; SINGLE; IMAGES; CNN;
D O I
10.1002/jmri.27129
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Approximately one-fourth of all cancer metastases are found in the brain. MRI is the primary technique for detection of brain metastasis, planning of radiotherapy, and the monitoring of treatment response. Progress in tumor treatment now requires detection of new or growing metastases at the small subcentimeter size, when these therapies are most effective. Purpose To develop a deep-learning-based approach for finding brain metastasis on MRI. Study Type Retrospective. Sequence Axial postcontrast 3D T-1-weighted imaging. Field Strength 1.5T and 3T. Population A total of 361 scans of 121 patients were used to train and test the Faster region-based convolutional neural network (Faster R-CNN): 1565 lesions in 270 scans of 73 patients for training; 488 lesions in 91 scans of 48 patients for testing. From the 48 outputs of Faster R-CNN, 212 lesions in 46 scans of 18 patients were used for training the RUSBoost algorithm (MatLab) and 276 lesions in 45 scans of 30 patients for testing. Assessment Two radiologists diagnosed and supervised annotation of metastases on brain MRI as ground truth. This data were used to produce a 2-step pipeline consisting of a Faster R-CNN for detecting abnormal hyperintensity that may represent brain metastasis and a RUSBoost classifier to reduce the number of false-positive foci detected. Statistical Tests The performance of the algorithm was evaluated by using sensitivity, false-positive rate, and receiver's operating characteristic (ROC) curves. The detection performance was assessed both per-metastases and per-slice. Results Testing on held-out brain MRI data demonstrated 96% sensitivity and 20 false-positive metastases per scan. The results showed an 87.1% sensitivity and 0.24 false-positive metastases per slice. The area under the ROC curve was 0.79. Conclusion Our results showed that deep-learning-based computer-aided detection (CAD) had the potential of detecting brain metastases with high sensitivity and reasonable specificity. Level of Evidence 3 Technical Efficacy Stage 2
引用
收藏
页码:1227 / 1236
页数:10
相关论文
共 50 条
  • [31] Deep-learning Object Detection for Resource Recycling
    Lai, Yeong-Lin
    Lai, Yeong-Kang
    Shih, Syuan-Yu
    Zheng, Chun-Yi
    Chuang, Ting-Hsueh
    2020 5TH INTERNATIONAL CONFERENCE ON PRECISION MACHINERY AND MANUFACTURING TECHNOLOGY, 2020, 1583
  • [32] A Deep-Learning Approach to Driver Drowsiness Detection
    Ahmed, Mohammed Imran Basheer
    Alabdulkarem, Halah
    Alomair, Fatimah
    Aldossary, Dana
    Alahmari, Manar
    Alhumaidan, Munira
    Alrassan, Shoog
    Rahman, Atta
    Youldash, Mustafa
    Zaman, Gohar
    SAFETY, 2023, 9 (03)
  • [33] MRI brain tumor detection using deep learning and machine learning approaches
    Anantharajan S.
    Gunasekaran S.
    Subramanian T.
    R V.
    Measurement: Sensors, 2024, 31
  • [34] Detection of Brain Tumor from Brain MRI Images with the Help of Machine Learning & Deep Learning
    Hamid, Khalid
    Iqbal, Muhammad Waseem
    Fuzail, Zubair
    Muhammad, Hafiz Abdul Basit
    Nazir, Zaeem
    Ghafoor, Zahid Tabassum
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (05): : 709 - 721
  • [35] A NEW DEEP-LEARNING APPROACH FOR EARLY DETECTION OF SHAPE VARIATIONS IN AUTISM USING STRUCTURAL MRI
    Ismail, Marwa
    Barnes, Gregory
    Nitzken, Matthew
    Switala, Andrew
    Shalaby, Ahmed
    Hosseini-Asl, Ehsan
    Casanova, Manuel
    Keynton, Robert
    Khalil, Ashraf
    El-Baz, Ayman
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1057 - 1061
  • [36] MRI pulse sequence integration for deep-learning-based brain metastases segmentation
    Yi, Darvin
    Grovik, Endre
    Tong, Elizabeth
    Iv, Michael
    Emblem, Kyrre Eeg
    Nilsen, Line Brennhaug
    Saxhaug, Cathrine
    Latysheva, Anna
    Jacobsen, Kari Dolven
    Helland, Aslaug
    Zaharchuk, Greg
    Rubin, Daniel
    MEDICAL PHYSICS, 2021, 48 (10) : 6020 - 6035
  • [37] Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study
    Endre Grøvik
    Darvin Yi
    Michael Iv
    Elizabeth Tong
    Line Brennhaug Nilsen
    Anna Latysheva
    Cathrine Saxhaug
    Kari Dolven Jacobsen
    Åslaug Helland
    Kyrre Eeg Emblem
    Daniel L. Rubin
    Greg Zaharchuk
    npj Digital Medicine, 4
  • [38] Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study
    Grovik, Endre
    Yi, Darvin
    Iv, Michael
    Tong, Elizabeth
    Nilsen, Line Brennhaug
    Latysheva, Anna
    Saxhaug, Cathrine
    Jacobsen, Kari Dolven
    Helland, Aslaug
    Emblem, Kyrre Eeg
    Rubin, Daniel L.
    Zaharchuk, Greg
    NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [39] Deep Learning for Detecting Brain Metastases on MRI: A Systematic Review and Meta-Analysis
    Ozkara, Burak B. B.
    Chen, Melissa M. M.
    Federau, Christian
    Karabacak, Mert
    Briere, Tina M. M.
    Li, Jing
    Wintermark, Max
    CANCERS, 2023, 15 (02)
  • [40] Deep learning for brain metastasis detection and segmentation in longitudinal MRI data
    Huang, Yixing
    Bert, Christoph
    Sommer, Philipp
    Frey, Benjamin
    Gaipl, Udo
    Distel, Luitpold, V
    Weissmann, Thomas
    Uder, Michael
    Schmidt, Manuel A.
    Dorfler, Arnd
    Maier, Andreas
    Fietkau, Rainer
    Putz, Florian
    MEDICAL PHYSICS, 2022, 49 (09) : 5773 - 5786