Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study

被引:36
|
作者
Grovik, Endre [1 ,2 ,3 ]
Yi, Darvin [4 ]
Iv, Michael [2 ]
Tong, Elizabeth [2 ]
Nilsen, Line Brennhaug [1 ]
Latysheva, Anna [5 ]
Saxhaug, Cathrine [5 ]
Jacobsen, Kari Dolven [6 ]
Helland, Aslaug [6 ]
Emblem, Kyrre Eeg [1 ]
Rubin, Daniel L. [4 ]
Zaharchuk, Greg [2 ]
机构
[1] Oslo Univ Hosp, Dept Diagnost Phys, Oslo, Norway
[2] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[3] Univ South Eastern Norway, Fac Hlth & Social Sci, Drammen, Norway
[4] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[5] Oslo Univ Hosp, Dept Radiol & Nucl Med, Oslo, Norway
[6] Oslo Univ Hosp, Dept Oncol, Oslo, Norway
基金
欧洲研究理事会;
关键词
CRITERIA; NETWORK;
D O I
10.1038/s41746-021-00398-4
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The purpose of this study was to assess the clinical value of a deep learning (DL) model for automatic detection and segmentation of brain metastases, in which a neural network is trained on four distinct MRI sequences using an input-level dropout layer, thus simulating the scenario of missing MRI sequences by training on the full set and all possible subsets of the input data. This retrospective, multicenter study, evaluated 165 patients with brain metastases. The proposed input-level dropout (ILD) model was trained on multisequence MRI from 100 patients and validated/tested on 10/55 patients, in which the test set was missing one of the four MRI sequences used for training. The segmentation results were compared with the performance of a state-of-the-art DeepLab V3 model. The MR sequences in the training set included pre-gadolinium and post-gadolinium (Gd) T1-weighted 3D fast spin echo, post-Gd T1-weighted inversion recovery (IR) prepped fast spoiled gradient echo, and 3D fluid attenuated inversion recovery (FLAIR), whereas the test set did not include the IR prepped image-series. The ground truth segmentations were established by experienced neuroradiologists. The results were evaluated using precision, recall, Intersection over union (IoU)-score and Dice score, and receiver operating characteristics (ROC) curve statistics, while the Wilcoxon rank sum test was used to compare the performance of the two neural networks. The area under the ROC curve (AUC), averaged across all test cases, was 0.989 +/- 0.029 for the ILD-model and 0.989 +/- 0.023 for the DeepLab V3 model (p = 0.62). The ILD-model showed a significantly higher Dice score (0.795 +/- 0.104 vs. 0.774 +/- 0.104, p = 0.017), and IoU-score (0.561 +/- 0.225 vs. 0.492 +/- 0.186, p < 0.001) compared to the DeepLab V3 model, and a significantly lower average false positive rate of 3.6/patient vs. 7.0/patient (p < 0.001) using a 10 mm(3) lesion-size limit. The ILD-model, trained on all possible combinations of four MRI sequences, may facilitate accurate detection and segmentation of brain metastases on a multicenter basis, even when the test cohort is missing input MRI sequences.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study
    Endre Grøvik
    Darvin Yi
    Michael Iv
    Elizabeth Tong
    Line Brennhaug Nilsen
    Anna Latysheva
    Cathrine Saxhaug
    Kari Dolven Jacobsen
    Åslaug Helland
    Kyrre Eeg Emblem
    Daniel L. Rubin
    Greg Zaharchuk
    npj Digital Medicine, 4
  • [2] Deep Learning Enables Automatic Detection and Segmentation of Brain Metastases on Multisequence MRI
    Grovik, Endre
    Yi, Darvin
    Iv, Michael
    Tong, Elizabeth
    Rubin, Daniel
    Zaharchuk, Greg
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (01) : 175 - 182
  • [3] MRI pulse sequence integration for deep-learning-based brain metastases segmentation
    Yi, Darvin
    Grovik, Endre
    Tong, Elizabeth
    Iv, Michael
    Emblem, Kyrre Eeg
    Nilsen, Line Brennhaug
    Saxhaug, Cathrine
    Latysheva, Anna
    Jacobsen, Kari Dolven
    Helland, Aslaug
    Zaharchuk, Greg
    Rubin, Daniel
    MEDICAL PHYSICS, 2021, 48 (10) : 6020 - 6035
  • [4] Deep Learning Methods for MRI Brain Tumor Segmentation: a comparative study
    Brahim, Ikram
    Fourer, Dominique
    Vigneron, Vincent
    Maaref, Hichem
    2019 NINTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2019,
  • [5] Accurate segmentation of neonatal brain MRI with deep learning
    Richter, Leonie
    Fetit, Ahmed E.
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [6] Unsupervised Deep Learning for Bayesian Brain MRI Segmentation
    Dalca, Adrian V.
    Yu, Evan
    Golland, Polina
    Fischl, Bruce
    Sabuncu, Mert R.
    Iglesias, Juan Eugenio
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 356 - 365
  • [7] Machine learning and deep learning for brain tumor MRI image segmentation
    Khan, Md Kamrul Hasan
    Guo, Wenjing
    Liu, Jie
    Dong, Fan
    Li, Zoe
    Patterson, Tucker A.
    Hong, Huixiao
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (21) : 1974 - 1992
  • [8] Deep-Learning Detection of Cancer Metastases to the Brain on MRI
    Zhang, Min
    Young, Geoffrey S.
    Chen, Huai
    Li, Jing
    Qin, Lei
    McFaline-Figueroa, J. Ricardo
    Reardon, David A.
    Cao, Xinhua
    Wu, Xian
    Xu, Xiaoyin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (04) : 1227 - 1236
  • [9] Brain metastases segmentation using deep learning with spatial information of brain parcellation
    Khodabakhshi, Zahra
    Huang, Yixing
    Fietkau, Rainer
    Guckenberger, Matthias
    Tanadini-Lang, Stephanie
    Putz, Florian
    Andratschke, Nicolaus
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S3120 - S3123
  • [10] Handling Missing Annotations for Semantic Segmentation with Deep ConvNets
    Petit, Olivier
    Thome, Nicolas
    Charnoz, Arnaud
    Hostettler, Alexandre
    Soler, Luc
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018, 2018, 11045 : 20 - 28