Interactions of lignin and LDPE during catalytic co-pyrolysis: Thermal behavior and kinetics study by TG-FTIR

被引:34
|
作者
Tao, Liangliang [1 ]
Ma, Xianming [1 ]
Ye, Lihui [1 ]
Jia, Jingwen [1 ]
Wang, Lu [1 ]
Ma, Peiyong [2 ]
Liu, Jian [1 ,3 ]
机构
[1] Hefei Univ Technol, Sch Food & Biol Engn, Hefei 230009, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Mech Engn, Hefei 230009, Anhui, Peoples R China
[3] Hefei Univ Technol, Minist Educ, Engn Res Ctr Bioproc, Hefei 230009, Peoples R China
关键词
Lignin; LDPE; Catalytic co-pyrolysis; TG-FTIR; Synergistic effect; DENSITY POLYETHYLENE; RICE STRAW; PLASTICS; BIOMASS; WASTE; BLENDS; DEGRADATION; HYDROGEN; FUELS;
D O I
10.1016/j.jaap.2021.105267
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Thermal behavior and interaction of Low-density polyethylene (LDPE) and lignin with HZSM-5 as catalyst during catalytic co-pyrolysis were analyzed by thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG-FTIR). The synergistic effect of lignin and hydrogen-rich LDPE decreased the starting temperature of pyrolysis and accelerated the pyrolysis rate. Kinetic analysis based on the Coats-Redfern method showed that HZSM-5 catalysis significantly decreased the reaction's activation energy. FTIR results also indicated that the composition of pyrolysis products shifted to more alkane and aromatics by co-feeding the lignin with LDPE and catalyst HZSM-5.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics
    Zhang, Xuesong
    Lei, Hanwu
    Zhu, Lei
    Zhu, Xiaolu
    Qian, Moriko
    Yadavalli, Gayatri
    Wu, Joan
    Chen, Shulin
    BIORESOURCE TECHNOLOGY, 2016, 220 : 233 - 238
  • [32] Effects of catalyst additives on catalytic pyrolysis of long flame coals: A TG-FTIR study
    Li, Shuang
    Chen, Jingsheng
    Hao, Ting
    Ma, Xiaoxun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [33] Comparison Study on Pyrolysis Characteristics and Kinetics of Corn Stover and Its Digestate by TG-FTIR
    Zhang, Deli
    Wang, Fang
    Yi, Weiming
    Li, Zhihe
    Shen, Xiuli
    Niu, Weisheng
    BIORESOURCES, 2017, 12 (04): : 8240 - 8254
  • [34] Kinetics and behavior analysis of lobster shell pyrolysis by TG-FTIR and Py-GC/MS
    Ding, Yongyu
    Liu, Jiacheng
    Qiu, Wen
    Cheng, Qunpeng
    Fan, Guozhi
    Song, Guangsen
    Zhang, Shunxi
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 165
  • [35] Kinetics and behavior analysis of lobster shell pyrolysis by TG-FTIR and Py-GC/MS
    Ding, Yongyu
    Liu, Jiacheng
    Qiu, Wen
    Cheng, Qunpeng
    Fan, Guozhi
    Song, Guangsen
    Zhang, Shunxi
    Journal of Analytical and Applied Pyrolysis, 2022, 165
  • [36] Study on volatile evolution during the Eucalyptus pyrolysis by using TG-FTIR analysis
    Fu, Dianzheng
    Tang, Ye
    Fu, Zhenghui
    Zhang, Hongliang
    Li, Wei
    BIOTECHNOLOGY, CHEMICAL AND MATERIALS ENGINEERING III, PTS 1 AND 2, 2014, 884-885 : 148 - +
  • [37] A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions
    Singh, R. K.
    Ruj, B.
    Sadhukhan, A. K.
    Gupta, P.
    JOURNAL OF THE ENERGY INSTITUTE, 2020, 93 (03) : 1020 - 1035
  • [38] Comparative investigation between co-pyrolysis characteristics of protein and carbohydrate by TG-FTIR and Py-GC/MSN
    Wei, Xiaoyu
    Ma, Xiaoqian
    Peng, Xiaowei
    Yao, Zhongliang
    Yang, Fan
    Dai, Minquan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 135 : 209 - 218
  • [39] Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS
    Chen, Hanping
    Xie, Yingpu
    Chen, Wei
    Xia, Mingwei
    Li, Kaixu
    Chen, Zhiqun
    Chen, Yingquan
    Yang, Haiping
    ENERGY CONVERSION AND MANAGEMENT, 2019, 196 : 320 - 329
  • [40] Investigation of the co-pyrolysis of coal slime and coffee industry residue based on machine learning methods and TG-FTIR: Synergistic effect, kinetics and thermodynamic
    Ni, Zhanshi
    Bi, Haobo
    Jiang, Chunlong
    Wang, Chengxin
    Tian, Junjian
    Zhou, Wenliang
    Sun, Hao
    Lin, Qizhao
    FUEL, 2021, 305