Interactions of lignin and LDPE during catalytic co-pyrolysis: Thermal behavior and kinetics study by TG-FTIR

被引:34
|
作者
Tao, Liangliang [1 ]
Ma, Xianming [1 ]
Ye, Lihui [1 ]
Jia, Jingwen [1 ]
Wang, Lu [1 ]
Ma, Peiyong [2 ]
Liu, Jian [1 ,3 ]
机构
[1] Hefei Univ Technol, Sch Food & Biol Engn, Hefei 230009, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Mech Engn, Hefei 230009, Anhui, Peoples R China
[3] Hefei Univ Technol, Minist Educ, Engn Res Ctr Bioproc, Hefei 230009, Peoples R China
关键词
Lignin; LDPE; Catalytic co-pyrolysis; TG-FTIR; Synergistic effect; DENSITY POLYETHYLENE; RICE STRAW; PLASTICS; BIOMASS; WASTE; BLENDS; DEGRADATION; HYDROGEN; FUELS;
D O I
10.1016/j.jaap.2021.105267
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Thermal behavior and interaction of Low-density polyethylene (LDPE) and lignin with HZSM-5 as catalyst during catalytic co-pyrolysis were analyzed by thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG-FTIR). The synergistic effect of lignin and hydrogen-rich LDPE decreased the starting temperature of pyrolysis and accelerated the pyrolysis rate. Kinetic analysis based on the Coats-Redfern method showed that HZSM-5 catalysis significantly decreased the reaction's activation energy. FTIR results also indicated that the composition of pyrolysis products shifted to more alkane and aromatics by co-feeding the lignin with LDPE and catalyst HZSM-5.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] TG-FTIR study on escape behavior of products from co-pyrolysis of coal and residuum
    Zhou X.
    Wu H.
    Liu J.
    Huang X.
    Liu T.
    Zhong M.
    Ma F.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2024, 52 (04): : 525 - 535
  • [2] Thermal behavior and gas evolution characteristics during co-pyrolysis of lignocellulosic biomass and coal: A TG-FTIR investigation
    Lin, Bowen
    Zhou, Jingsong
    Qin, Qianwen
    Song, Xin
    Luo, Zhongyang
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2019, 144
  • [3] TG-FTIR study on co-pyrolysis of municipal solid waste with biomass
    Ren, Qiangqiang
    Zhao, Changsui
    Wu, Xin
    Liang, Cai
    Chen, Xiaoping
    Shen, Jiezhong
    Tang, Guoyong
    Wang, Zheng
    BIORESOURCE TECHNOLOGY, 2009, 100 (17) : 4054 - 4057
  • [4] Interactions of biomass components during pyrolysis: A TG-FTIR study
    Liu, Qian
    Zhong, Zhaoping
    Wang, Shurong
    Luo, Zhongyang
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2011, 90 (02) : 213 - 218
  • [5] A TG-FTIR investigation to the co-pyrolysis of oil shale with coal
    Li, Shuangshuang
    Ma, Xiaoqian
    Liu, Guicai
    Guo, Mingxuan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2016, 120 : 540 - 548
  • [6] Co-pyrolysis between microalgae and textile dyeing sludge by TG-FTIR: Kinetics and products
    Peng, Xiaowei
    Ma, Xiaoqian
    Lin, Yousheng
    Guo, Zhenge
    Hu, Shanchao
    Ning, Xingxing
    Cao, Yawen
    Zhang, Yaowei
    ENERGY CONVERSION AND MANAGEMENT, 2015, 100 : 391 - 402
  • [7] Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS
    Jin, Wei
    Shen, Dekui
    Liu, Qian
    Xiao, Rui
    POLYMER DEGRADATION AND STABILITY, 2016, 133 : 65 - 74
  • [8] Co-pyrolysis of waste tire and larch wood in TG-FTIR
    He, Hong-Kui
    Wang, Wen-Liang
    Chang, Jian-Min
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2014, 42 (07): : 799 - 804
  • [9] Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: Kinetics and products
    Li, Bosong
    Lv, Wei
    Zhang, Qi
    Wang, Tiejun
    Ma, Longlong
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2014, 108 : 295 - 300
  • [10] Study of breakage of main covalent bonds during co-pyrolysis of oil shale and alkaline lignin by TG-FTIR integrated analysis
    Bai, Jingru
    Chen, Xiaolin
    Shao, Jiaye
    Jia, Chunxia
    Wang, Qing
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (03) : 512 - 522