Ricci flows connecting Taub-Bolt and Taub-NUT metrics

被引:11
|
作者
Holzegel, Gustav
Schmelzer, Thomas
Warnick, Claude
机构
[1] Univ Cambridge, DAMTP, Cambridge CBI 0WA, England
[2] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
D O I
10.1088/0264-9381/24/24/004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the Ricci flow with surgery to study four-dimensional SU(2) x U(1)-symmetric metrics on a manifold with fixed boundary given by a squashed 3-sphere. Depending on the initial metric we show that the flow converges to either the Taub-Bolt or the Taub-NUT metric, the latter case potentially requiring surgery at some point in the evolution. The Ricci flow allows us to explore the Euclidean action landscape within this symmetry class. This work extends the recent work of Headrick and Wiseman (2006 Class. Quantum Grav. 23 6683) to more interesting topologies.
引用
收藏
页码:6201 / 6217
页数:17
相关论文
共 50 条
  • [31] Hairy Taub-NUT/bolt-AdS solutions in Horndeski theory
    Arratia, Esteban
    Corral, Cristobal
    Figueroa, Jose
    Sanhueza, Leonardo
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [32] Charged black holes on the Taub-bolt instanton
    Stelea, Cristian
    Dariescu, Ciprian
    Dariescu, Marina-Aura
    PHYSICAL REVIEW D, 2013, 87 (02):
  • [33] Generalized Taub-NUT metrics and Killing-Yano tensors
    Visinescu, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (23): : 4383 - 4391
  • [34] Nonlinear extensions of gravitating dyons: from NUT wormholes to Taub-Bolt instantons
    Daniel Flores-Alonso
    Román Linares
    Marco Maceda
    Journal of High Energy Physics, 2021
  • [35] Harmonic forms and spinors on the Taub-bolt space
    Franchetti, Guido
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 141 : 11 - 28
  • [36] Taub-NUT solutions in conformal electrodynamics
    Bordo, Alvaro Ballon
    Kubiznak, David
    Perche, Tales Rick
    PHYSICS LETTERS B, 2021, 817
  • [37] HYPERKAHLER STRUCTURE OF THE TAUB-NUT METRIC
    Gaeta, G.
    Rodriguez, M. A.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (02) : 226 - 235
  • [38] GLOBAL SINGULARITIES AND TAUB-NUT METRIC
    FEINBLUM, DA
    JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (09) : 2713 - &
  • [39] Rotating black rings on Taub-NUT
    Yu Chen
    Edward Teo
    Journal of High Energy Physics, 2012
  • [40] Taub-NUT dynamics with a magnetic field
    Jante, Rogelio
    Schroers, Bernd J.
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 104 : 305 - 328