HYPERKAHLER STRUCTURE OF THE TAUB-NUT METRIC

被引:6
|
作者
Gaeta, G. [1 ]
Rodriguez, M. A. [2 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
关键词
Hyperkahler manifolds; Taub-NUT metric; KAHLER GEOMETRY; MODULI SPACES; CONSTRUCTION; INSTANTONS; NEWMAN; UNTI;
D O I
10.1142/S1402925112500143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Taub-NUT four-dimensional space-time can be obtained from Euclidean eight-dimensional one through a momentum map construction; the HKLR theorem [9] guarantees the hyperkahler structure of R-8 descends to a hyperkahler structure in the Taub-NUT space. Here we present a detailed and fully explicit construction of the hyperkahler structure of a space-time with a Taub-NUT metric.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 50 条
  • [1] Hyperkähler Structure of the Taub-NUT Metric
    G. Gaeta
    M. A. Rodríguez
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 226 - 235
  • [2] HYPERKAHLER GENERALIZATION OF TAUB-NUT FROM HARMONIC SUPERSPACE
    OLIVIER, D
    VALENT, G
    PHYSICS LETTERS B, 1987, 189 (1-2) : 79 - 82
  • [3] GLOBAL SINGULARITIES AND TAUB-NUT METRIC
    FEINBLUM, DA
    JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (09) : 2713 - &
  • [4] Quaternionic extension of the double Taub-NUT metric
    Casteill, PY
    Ivanov, E
    Valent, G
    PHYSICS LETTERS B, 2001, 508 (3-4) : 354 - 364
  • [5] Harmonic approach and quaternionic Taub-NUT metric
    Ivanov, E
    Valent, G
    SUPERSYMMETRIES AND QUANTUM SYMMETRIES, 1999, 524 : 79 - 89
  • [6] HYPERKAHLER METRICS BUILDING IN THE 1 + 3 REPRESENTATION - THE TAUB-NUT CASE
    ELHASSOUNI, A
    LHALLABI, T
    OUDRHIRISAFIANI, EG
    SAIDI, EH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (02): : 351 - 368
  • [7] Circular orbits in the Taub-NUT and massless Taub-NUT spacetime
    Pradhan, Parthapratim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (07)
  • [8] Asymptotic flatness, Taub-NUT metric, and variational principle
    Virmani, Amitabh
    PHYSICAL REVIEW D, 2011, 84 (06):
  • [9] Geodesic deviation on symmetry axis in Taub-NUT metric
    Vandeev, V. P.
    Semenova, A. N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2022, 31 (15):
  • [10] Harmonic space construction of the quaternionic Taub-NUT metric
    Ivanov, E
    Valent, G
    CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (03) : 1039 - 1056