HYPERKAHLER STRUCTURE OF THE TAUB-NUT METRIC

被引:6
|
作者
Gaeta, G. [1 ]
Rodriguez, M. A. [2 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
关键词
Hyperkahler manifolds; Taub-NUT metric; KAHLER GEOMETRY; MODULI SPACES; CONSTRUCTION; INSTANTONS; NEWMAN; UNTI;
D O I
10.1142/S1402925112500143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Taub-NUT four-dimensional space-time can be obtained from Euclidean eight-dimensional one through a momentum map construction; the HKLR theorem [9] guarantees the hyperkahler structure of R-8 descends to a hyperkahler structure in the Taub-NUT space. Here we present a detailed and fully explicit construction of the hyperkahler structure of a space-time with a Taub-NUT metric.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 50 条
  • [21] Magnetized Taub-NUT spacetime
    Siahaan, Haryanto M.
    NUCLEAR PHYSICS B, 2022, 978
  • [22] Instantons on the Taub-NUT space
    Cherkis, Sergey A.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 14 (02) : 609 - 641
  • [23] On the Taub-NUT spinning space
    Visinescu, M
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (1-3): : 229 - 232
  • [24] An exactly solvable deformation of the Coulomb problem associated with the Taub-NUT metric
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    Riglioni, Danilo
    ANNALS OF PHYSICS, 2014, 351 : 540 - 557
  • [25] A new way to derive the Taub-NUT metric with positive cosmological constant
    Osuga, Kento
    Page, Don N.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
  • [26] Holography and quaternionic Taub-NUT
    Zoubos, K
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (12):
  • [27] CONSTRUCTION OF TAUB-NUT CONGRUENCE
    HOGAN, PA
    CRISS, T
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1976, 15 (03) : 207 - 212
  • [28] SUPERSYMMETRY AND THE GEOMETRY OF TAUB-NUT
    VANHOLTEN, JW
    PHYSICS LETTERS B, 1995, 342 (1-4) : 47 - 52
  • [29] TAUB-NUT FAMILY OF SOLUTIONS
    YAMAZAKI, M
    PHYSICS LETTERS A, 1978, 68 (5-6) : 412 - 414
  • [30] Taub-NUT solutions in conformal electrodynamics
    Bordo, Alvaro Ballon
    Kubiznak, David
    Perche, Tales Rick
    PHYSICS LETTERS B, 2021, 817