Optimization of laser-driven cylindrical implosions on the OMEGA laser

被引:14
|
作者
Hansen, E. C. [1 ]
Barnak, D. H. [2 ]
Chang, P. -Y. [3 ]
Betti, R. [1 ]
Campbell, E. M. [1 ]
Davies, J. R. [1 ]
Knauer, J. P. [1 ]
Peebles, J. L. [1 ]
Regan, S. P. [1 ]
Sefkow, A. B. [1 ]
机构
[1] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Natl Cheng Kung Univ, Inst Space & Plasma Sci, Taipei 701, Taiwan
关键词
SIMULATIONS;
D O I
10.1063/1.5055776
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Laser-driven cylindrical implosions were conducted on the OMEGA laser as part of the laser-driven mini-MagLIF (Magnetized Liner Inertial Fusion) Campaign. Gated x-ray images were analyzed to infer shell trajectories and study the energy coupling in these implosions. Two-dimensional and three-dimensional HYDRA simulations were performed and post-processed to produce synthetic x-ray self-emission images for comparison. An analysis technique, which could be applied to both experimental and simulated x-ray images, was developed to characterize the shape and uniformity of the implosion. The analysis leads to a measurement of the average implosion velocity and axial implosion length, which can then be used to optimize the beam pointing and energy balance for future experiments. Discrepancies between simulation results and experiments allude to important physical processes that are not accounted for in the simulations. In 2-D simulations, the laser beam's azimuthal angle of incidence is not included because the phi-direction is not simulated, and thus, energy absorption is over-predicted. The 3-D simulation results are more consistent with the experiments, but the simulations do not include the calculation of cross-beam energy transfer or non-local thermal transport, which affects the energy coupled to the implosion. By appropriately adjusting the simulated energy balance and flux limit, the simulations can accurately model the experiments, which have achieved uniform implosions over a 700-mu m-long region at velocities of approximately 200 km/s. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] FAST-ION VELOCITY SPECTRA FROM LASER-DRIVEN MICROSHELL IMPLOSIONS
    MAYER, FJ
    SLATER, DC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (09): : 1120 - 1120
  • [42] Optimization of neutronless targets of laser-driven fusion
    Volosevich P.P.
    Guskov S.J.
    Zmitrenko N.V.
    Levanov E.I.
    Rozanov V.B.
    Severina E.V.
    Mathematical Models and Computer Simulations, 2010, 2 (1) : 1 - 8
  • [43] LASER DRIVEN ISOTHERMAL IMPLOSIONS
    DAHLBACKA, GH
    NUCKOLLS, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 950 - 950
  • [44] Formation of a supersonic laser-driven plasma jet in a cylindrical channel
    Badziak, J.
    Pisarczyk, T.
    Chodukowski, T.
    Kasperczuk, A.
    Parys, P.
    Rosinski, M.
    Wolowski, J.
    Krousky, E.
    Krasa, J.
    Masek, K.
    Pfeifer, M.
    Skala, J.
    Ullschmied, J.
    Velyhan, A.
    Dhareshwar, L. J.
    Gupta, N. K.
    Rhee, Yong-Joo
    Torrisi, L.
    Pisarczyk, P.
    PHYSICS OF PLASMAS, 2009, 16 (11) : 114506
  • [45] Laser-driven relativistic electron dynamics in a cylindrical plasma channel
    耿盼飞
    吕文娟
    李晓亮
    唐荣安
    薛具奎
    Chinese Physics B, 2018, (03) : 318 - 324
  • [46] Laser-driven relativistic electron dynamics in a cylindrical plasma channel
    Geng, Pan-Fei
    Lv, Wen-Juan
    Li, Xiao-Liang
    Tang, Rong-An
    Xue, Ju-Kui
    CHINESE PHYSICS B, 2018, 27 (03)
  • [47] Proton radiography of laser-driven imploding target in cylindrical geometry
    Volpe, L.
    Batani, D.
    Vauzour, B.
    Nicolai, Ph.
    Santos, J. J.
    Regan, C.
    Morace, A.
    Dorchies, F.
    Fourment, C.
    Hulin, S.
    Perez, F.
    Baton, S.
    Lancaster, K.
    Galimberti, M.
    Heathcote, R.
    Tolley, M.
    Spindloe, Ch.
    Koester, P.
    Labate, L.
    Gizzi, L. A.
    Benedetti, C.
    Sgattoni, A.
    Richetta, M.
    Pasley, J.
    Beg, F.
    Chawla, S.
    Higginson, D. P.
    MacPhee, A. G.
    PHYSICS OF PLASMAS, 2011, 18 (01)
  • [48] Cylindrical Rod Phosphor Structure for Laser-Driven White Lighting
    Chen, Bing-Mau
    Ying, Shang-Ping
    Huang, Hsuan-Li
    Cheng, Yu-Chieh
    COATINGS, 2022, 12 (11)
  • [49] NON-LINEAR DEVELOPMENT OF RAYLEIGH-TAYLOR INSTABILITY IN LASER-DRIVEN IMPLOSIONS
    MCCRORY, RL
    MORSE, RL
    VERDON, CP
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (04) : 549 - 549
  • [50] Signatures of target performance and mixing in titanium-doped, laser-driven target implosions
    Yaakobi, B
    Marshall, FJ
    Bradley, DK
    Delettrez, JA
    Craxton, RS
    Epstein, R
    PHYSICS OF PLASMAS, 1997, 4 (08) : 3021 - 3030