Optimization of laser-driven cylindrical implosions on the OMEGA laser

被引:14
|
作者
Hansen, E. C. [1 ]
Barnak, D. H. [2 ]
Chang, P. -Y. [3 ]
Betti, R. [1 ]
Campbell, E. M. [1 ]
Davies, J. R. [1 ]
Knauer, J. P. [1 ]
Peebles, J. L. [1 ]
Regan, S. P. [1 ]
Sefkow, A. B. [1 ]
机构
[1] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Natl Cheng Kung Univ, Inst Space & Plasma Sci, Taipei 701, Taiwan
关键词
SIMULATIONS;
D O I
10.1063/1.5055776
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Laser-driven cylindrical implosions were conducted on the OMEGA laser as part of the laser-driven mini-MagLIF (Magnetized Liner Inertial Fusion) Campaign. Gated x-ray images were analyzed to infer shell trajectories and study the energy coupling in these implosions. Two-dimensional and three-dimensional HYDRA simulations were performed and post-processed to produce synthetic x-ray self-emission images for comparison. An analysis technique, which could be applied to both experimental and simulated x-ray images, was developed to characterize the shape and uniformity of the implosion. The analysis leads to a measurement of the average implosion velocity and axial implosion length, which can then be used to optimize the beam pointing and energy balance for future experiments. Discrepancies between simulation results and experiments allude to important physical processes that are not accounted for in the simulations. In 2-D simulations, the laser beam's azimuthal angle of incidence is not included because the phi-direction is not simulated, and thus, energy absorption is over-predicted. The 3-D simulation results are more consistent with the experiments, but the simulations do not include the calculation of cross-beam energy transfer or non-local thermal transport, which affects the energy coupled to the implosion. By appropriately adjusting the simulated energy balance and flux limit, the simulations can accurately model the experiments, which have achieved uniform implosions over a 700-mu m-long region at velocities of approximately 200 km/s. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] SPECTROSCOPIC ANALYSIS OF AR-DOPED LASER-DRIVEN IMPLOSIONS
    HAYNES, DA
    HOOPER, CF
    MANCINI, RC
    BRADLEY, DK
    DELETTREZ, J
    EPSTEIN, R
    JAANIMAGI, PA
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (01): : 755 - 757
  • [22] Proton Radiography of a Laser-Driven Cylindrical Implosion
    Jafer, R.
    Volpe, L.
    Batani, D.
    Koenig, M.
    Baton, S.
    Brambrink, E.
    Perez, F.
    Dorchies, F.
    Santos, J. J.
    Fourment, C.
    Hulin, S.
    Nicolai, P.
    Vauzour, B.
    Lancaster, K.
    Galimberti, M.
    Heathcote, R.
    Tolley, M.
    Spindloe, Ch
    Koester, P.
    Labate, L.
    Gizzi, L.
    Benedetti, C.
    Sgattoni, A.
    Richetta, M.
    Pasley, J.
    Beg, F.
    Chawla, S.
    Higginson, D.
    MacKinnon, A.
    McPhee, A.
    Kwon, Duck-Hee
    Ree, Yongjoo
    2ND INTERNATIONAL CONFERENCE ON ULTRA-INTENSE LASER INTERACTION SCIENCE, 2010, 1209 : 47 - +
  • [23] High speed laser shadowgraphy for electromagnetically driven cylindrical implosions
    Rodriguez, G
    Roberts, JP
    Echave, JA
    Taylor, AJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (08): : 3230 - 3236
  • [24] ABSORPTION-SPECTROSCOPY DIAGNOSIS OF PUSHER CONDITIONS IN LASER-DRIVEN IMPLOSIONS
    HAUER, A
    COWAN, RD
    YAAKOBI, B
    BARNOUIN, O
    EPSTEIN, R
    PHYSICAL REVIEW A, 1986, 34 (01): : 411 - 420
  • [25] Probing atomic physics at ultrahigh pressure using laser-driven implosions
    Hu, S. X.
    Bishel, David T.
    Chin, David A.
    Nilson, Philip M.
    Karasiev, Valentin V.
    Golovkin, Igor E.
    Gu, Ming
    Hansen, Stephanie B.
    Mihaylov, Deyan, I
    Shaffer, Nathaniel R.
    Zhang, Shuai
    Walton, Timothy
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [26] Bayesian inference of deceleration-phase Rayleigh-Taylor growth rates in laser-driven cylindrical implosions
    Tobias, B.
    Kawaguchi, C. F.
    Palaniyappan, S.
    Sauppe, J. P.
    Flippo, K. A.
    Kline, J. L.
    HIGH ENERGY DENSITY PHYSICS, 2020, 37
  • [27] In-Flight Measurements of Capsule Shell Adiabats in Laser-Driven Implosions
    Kritcher, A. L.
    Doeppner, T.
    Fortmann, C.
    Ma, T.
    Landen, O. L.
    Wallace, R.
    Glenzer, S. H.
    PHYSICAL REVIEW LETTERS, 2011, 107 (01)
  • [28] LASER-DRIVEN ISENTROPIC HOLLOW-SHELL IMPLOSIONS - PROBLEM OF IGNITION
    KIDDER, RE
    NUCLEAR FUSION, 1979, 19 (02) : 223 - 234
  • [29] Probing atomic physics at ultrahigh pressure using laser-driven implosions
    S. X. Hu
    David T. Bishel
    David A. Chin
    Philip M. Nilson
    Valentin V. Karasiev
    Igor E. Golovkin
    Ming Gu
    Stephanie B. Hansen
    Deyan I. Mihaylov
    Nathaniel R. Shaffer
    Shuai Zhang
    Timothy Walton
    Nature Communications, 13
  • [30] Double-Pulse Laser-Driven Jets on OMEGA
    S. Sublett
    J. P. Knauer
    I. V. Igumenshchev
    A. Frank
    D. D. Meyerhofer
    Astrophysics and Space Science, 2007, 307 : 47 - 50