Deep learning for subtyping the Alzheimer's disease spectrum

被引:1
|
作者
Romano, Michael F. [1 ,2 ,3 ]
Kolachalama, Vijaya B. [1 ,4 ,5 ]
机构
[1] Boston Univ, Sch Med, Dept Med, Boston, MA 02118 USA
[2] St Elizabeths Med Ctr, Dept Med, Brighton, MA USA
[3] Tufts Univ, Sch Med, Dept Med, Boston, MA 02111 USA
[4] Boston Univ, Dept Comp Sci, 111 Cummington St, Boston, MA 02215 USA
[5] Boston Univ, Fac Comp & Data Sci, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.molmed.2021.12.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In a recent article from Cell Reports Medicine, Kwak et al. generate novel insights about subtyping cognitively impaired individuals based on structural imaging. Quantifying heterogeneity in Alzheimer's disease via subtyping could help us harness new disease-modifying therapies and improve patient care by providing a more targeted approach.
引用
收藏
页码:81 / 83
页数:3
相关论文
共 50 条
  • [21] A review of the application of deep learning in the detection of Alzheimer's disease
    Gao S.
    Lima D.
    International Journal of Cognitive Computing in Engineering, 2022, 3 : 1 - 8
  • [22] Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review
    Malik, Isra
    Iqbal, Ahmed
    Gu, Yeong Hyeon
    Al-antari, Mugahed A.
    DIAGNOSTICS, 2024, 14 (12)
  • [23] Multimodal deep learning for Alzheimer’s disease dementia assessment
    Shangran Qiu
    Matthew I. Miller
    Prajakta S. Joshi
    Joyce C. Lee
    Chonghua Xue
    Yunruo Ni
    Yuwei Wang
    Ileana De Anda-Duran
    Phillip H. Hwang
    Justin A. Cramer
    Brigid C. Dwyer
    Honglin Hao
    Michelle C. Kaku
    Sachin Kedar
    Peter H. Lee
    Asim Z. Mian
    Daniel L. Murman
    Sarah O’Shea
    Aaron B. Paul
    Marie-Helene Saint-Hilaire
    E. Alton Sartor
    Aneeta R. Saxena
    Ludy C. Shih
    Juan E. Small
    Maximilian J. Smith
    Arun Swaminathan
    Courtney E. Takahashi
    Olga Taraschenko
    Hui You
    Jing Yuan
    Yan Zhou
    Shuhan Zhu
    Michael L. Alosco
    Jesse Mez
    Thor D. Stein
    Kathleen L. Poston
    Rhoda Au
    Vijaya B. Kolachalama
    Nature Communications, 13
  • [24] Deep Learning Approach for Early Detection of Alzheimer's Disease
    Helaly, Hadeer A.
    Badawy, Mahmoud
    Haikal, Amira Y.
    COGNITIVE COMPUTATION, 2022, 14 (05) : 1711 - 1727
  • [25] Application of Deep Learning in Classification and Diagnosis of Alzheimer’s Disease
    Du, Yuzheng
    Cao, Hui
    Nie, Yongqi
    Wei, Dejian
    Feng, Yanyan
    Computer Engineering and Applications, 2024, 59 (03) : 49 - 65
  • [26] Ensemble deep learning for Alzheimer’s disease characterization and estimation
    M. Tanveer
    T. Goel
    R. Sharma
    A. K. Malik
    I. Beheshti
    J. Del Ser
    P. N. Suganthan
    C. T. Lin
    Nature Mental Health, 2024, 2 (6): : 655 - 667
  • [27] Deep Learning-Based Diagnosis of Alzheimer's Disease
    Saleem, Tausifa Jan
    Zahra, Syed Rameem
    Wu, Fan
    Alwakeel, Ahmed
    Alwakeel, Mohammed
    Jeribi, Fathe
    Hijji, Mohammad
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [28] Alzheimer's Disease Detection Using Machine Learning and Deep Learning Algorithms
    Sentamilselvan, K.
    Swetha, J.
    Sujitha, M.
    Vigasini, R.
    INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021, 2022, 419 : 296 - 306
  • [29] Application of Deep Learning in the Diagnosis of Alzheimer's and Parkinson's Disease: A Review
    Suganya, Asokan
    Aarthy, Seshadri Lakshminarayanan
    CURRENT MEDICAL IMAGING, 2024, 20
  • [30] Intelligent Data Processing for Alzheimer's Disease Using Deep Learning
    Garg, Nidhi
    Chutani, Gautam
    Bohra, Himanshu
    Chaudhary, Shagun
    Sharma, Preeti
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2024,