Deep learning for subtyping the Alzheimer's disease spectrum

被引:1
|
作者
Romano, Michael F. [1 ,2 ,3 ]
Kolachalama, Vijaya B. [1 ,4 ,5 ]
机构
[1] Boston Univ, Sch Med, Dept Med, Boston, MA 02118 USA
[2] St Elizabeths Med Ctr, Dept Med, Brighton, MA USA
[3] Tufts Univ, Sch Med, Dept Med, Boston, MA 02111 USA
[4] Boston Univ, Dept Comp Sci, 111 Cummington St, Boston, MA 02215 USA
[5] Boston Univ, Fac Comp & Data Sci, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.molmed.2021.12.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In a recent article from Cell Reports Medicine, Kwak et al. generate novel insights about subtyping cognitively impaired individuals based on structural imaging. Quantifying heterogeneity in Alzheimer's disease via subtyping could help us harness new disease-modifying therapies and improve patient care by providing a more targeted approach.
引用
收藏
页码:81 / 83
页数:3
相关论文
共 50 条
  • [11] Deep structural learning for classification of Alzheimer's disease
    Oishi, N.
    Fukuyama, H.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2017, 381 : 811 - 811
  • [12] Pipelined deep learning architecture for the detection of Alzheimer's disease
    Prasath, T.
    Sumathi, V.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
  • [13] Early Diagnosis of Alzheimer's Disease Using Deep Learning
    Ji, Huanhuan
    Liu, Zhenbing
    Yan, Wei Qi
    Klette, Reinhard
    ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 87 - 91
  • [14] A Comprehensive Deep Learning Model for the Tracking of Alzheimer's Disease
    Deatsch, A.
    Namias, M.
    Jeraj, R.
    MEDICAL PHYSICS, 2020, 47 (06) : E565 - E565
  • [15] Deep Learning Approach for Early Detection of Alzheimer’s Disease
    Hadeer A. Helaly
    Mahmoud Badawy
    Amira Y. Haikal
    Cognitive Computation, 2022, 14 : 1711 - 1727
  • [16] Early Alzheimer’s Disease Detection Using Deep Learning
    Lokesh K.
    Challa N.P.
    Satwik A.S.
    Kiran J.C.
    Rao N.K.
    Naseeba B.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [17] A Deep Learning Approach to Neuroanatomical Characterisation of Alzheimer's Disease
    Ambastha, Abhinit Kumar
    Leong, Tze-Yun
    MEDINFO 2017: PRECISION HEALTHCARE THROUGH INFORMATICS, 2017, 245 : 1249 - 1249
  • [18] Multimodal deep learning for Alzheimer's disease dementia assessment
    Qiu, Shangran
    Miller, Matthew, I
    Joshi, Prajakta S.
    Lee, Joyce C.
    Xue, Chonghua
    Ni, Yunruo
    Wang, Yuwei
    De Anda-Duran, Ileana
    Hwang, Phillip H.
    Cramer, Justin A.
    Dwyer, Brigid C.
    Hao, Honglin
    Kaku, Michelle C.
    Kedar, Sachin
    Lee, Peter H.
    Mian, Asim Z.
    Murman, Daniel L.
    O'Shea, Sarah
    Paul, Aaron B.
    Saint-Hilaire, Marie-Helene
    Sartor, E. Alton
    Saxena, Aneeta R.
    Shih, Ludy C.
    Small, Juan E.
    Smith, Maximilian J.
    Swaminathan, Arun
    Takahashi, Courtney E.
    Taraschenko, Olga
    You, Hui
    Yuan, Jing
    Zhou, Yan
    Zhu, Shuhan
    Alosco, Michael L.
    Mez, Jesse
    Stein, Thor D.
    Poston, Kathleen L.
    Au, Rhoda
    Kolachalama, Vijaya B.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [19] Deep Geometrical Learning for Alzheimer's Disease Progression Modeling
    Jeong, Seungwoo
    Jung, Wonsik
    Sohn, Junghyo
    Suk, Heung-Il
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 211 - 220
  • [20] Hybridized Deep Learning Approach for Detecting Alzheimer's Disease
    Balaji, Prasanalakshmi
    Chaurasia, Mousmi Ajay
    Bilfaqih, Syeda Meraj
    Muniasamy, Anandhavalli
    Alsid, Linda Elzubir Gasm
    BIOMEDICINES, 2023, 11 (01)