Carbon-Integrated Vanadium Oxide Hydrate as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries

被引:10
|
作者
Lewis, Courtney-Elyce M. [1 ,2 ]
Fernando, Joseph F. S. [1 ,2 ]
Siriwardena, Dumindu P. [1 ,2 ]
Firestein, Konstantin L. [1 ,2 ]
Zhang, Chao [1 ,2 ]
Golberg, Dmitri, V [1 ,2 ]
机构
[1] Queensland Univ Technol QUT, Fac Sci, Ctr Mat Sci, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol QUT, Fac Sci, Sch Chem & Phys, Brisbane, Qld 4000, Australia
基金
澳大利亚研究理事会;
关键词
electrochemistry; zinc-ion battery; cathode material; vanadium oxide hydrate; green technology; renewable energy sources include solar; wind; hydropower; NONAQUEOUS SOLVENTS; STORAGE; CAPACITY; ENERGY;
D O I
10.1021/acsaem.1c03517
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydration of bilayer vanadium oxides has become the focus of several recent studies toward increasing the interlayer spacing and improving their structural stability, which is favorable for the reversible (de)insertion of Zn2+ ions. However, there is limited understanding on the optimal level of H2O molecules to be incorporated within the vanadium oxide structure. Herein, we investigate the effects of the interlayer H2O content in a vanadium(IV,V) oxide-based cathode material toward the electrochemical performance of a zinc-ion battery (ZIB). A simple solvothermal synthetic route was employed to synthesize carbon-integrated hydrated vanadium oxides with varying H2O contents, CHVO (V5O12middot2.7H2O) and CHVOLW (V5O12middot0.4H2O). CHVO material displays a high capacity of 396 mA h g-1 at a specific current of 250 mA g-1 and an excellent rate capability (187 W h kg-1 at a high-power density of 4.5 kW kg-1). In contrast, CHVO-LW delivers a higher capacity of 582 mA h g-1 at 200 mA g-1 in the initial cycles, however, suffers a rapid capacity decay and cell failure in subsequent cycles. Electrochemical characterizations revealed that structural pillars, such as H2O molecules, can indeed provide significant structural stability, yet too many of them can block intercalation pathways leading to lower capacity. This study shows the importance of adjusting the hydration level to sustain a balance between the high capacity and long-term stability of hydrated vanadium oxide cathode-based ZIBs.
引用
收藏
页码:4159 / 4169
页数:11
相关论文
共 50 条
  • [41] Porous cubic MnCo 2 O 4 as a high-performance cathode material for aqueous zinc-ion batteries
    Wu, Yujuan
    Hu, Yingying
    Zhao, Pei
    Zhang, Huihui
    Wang, Ruilin
    Mao, Yiyang
    Wang, Mengbo
    Yang, Ziwen
    Zhang, Xinlei
    Ding, Kun
    Guo, Yong
    Zhang, Qianjun
    Xu, Lianyi
    Wang, Baofeng
    SOLID STATE IONICS, 2024, 411
  • [42] Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries
    Zhang, Xiaotan
    Li, Jiangxu
    Ao, Huaisheng
    Liu, Dongyan
    Shi, Lei
    Wang, Chengming
    Zhu, Yongchun
    Qian, Yitai
    ENERGY STORAGE MATERIALS, 2020, 30 : 337 - 345
  • [43] Synergetic vanadium oxide nanocomposite cathode material with high specific capacity and long life for advanced aqueous zinc-ion batteries
    Sun, Dong
    Wan, Wan
    Zhang, Meng
    Jin, Yaxuan
    Ma, Weiyan
    Cao, Yali
    Chai, Hui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 969
  • [44] Synergetic vanadium oxide nanocomposite cathode material with high specific capacity and long life for advanced aqueous zinc-ion batteries
    Sun, Dong
    Wan, Wan
    Zhang, Meng
    Jin, Yaxuan
    Ma, Weiyan
    Cao, Yali
    Chai, Hui
    Journal of Alloys and Compounds, 2023, 969
  • [45] Distorting Local Structures to Modulate Ligand Fields in Vanadium Oxide for High-Performance Aqueous Zinc-Ion Batteries
    Liu, Heng
    Yang, Long
    Shen, Ting
    Li, Changyuan
    Kang, Te
    Niu, Huanhuan
    Huang, Wei-Hsiang
    Chang, Chun-Chi
    Yang, Menghao
    Cao, Guozhong
    Liu, Chaofeng
    ACS NANO, 2025, 19 (09) : 9132 - 9143
  • [46] Metal ions and organic molecule co-intercalated vanadium oxide cathode for high-performance zinc-ion batteries
    Hu, Liang
    Sun, Qinghe
    Cai, Hongkun
    Ni, Jian
    Zhang, Jianjun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 177
  • [47] Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries
    Luo, Ping
    Zhang, Wenwei
    Wang, Shiyu
    Liu, Gangyuan
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Fu, Xudong
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884
  • [48] Co-insertion of K+ and Ca2+ in vanadium oxide as high-performance aqueous zinc-ion battery cathode material
    Li, Zhaoao
    Yang, Linyu
    Wang, Shuying
    Zhu, Kunjie
    Li, Haibing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 992
  • [49] Advanced electrolytes for high-performance aqueous zinc-ion batteries
    Wei, Jie
    Zhang, Pengbo
    Sun, Jingjie
    Liu, Yuzhu
    Li, Fajun
    Xu, Haifeng
    Ye, Ruquan
    Tie, Zuoxiu
    Sun, Lin
    Jin, Zhong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 10335 - 10369
  • [50] Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    von Treifeldt, Joel E.
    Golberg, Dmitri V.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)