Carbon-Integrated Vanadium Oxide Hydrate as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries

被引:10
|
作者
Lewis, Courtney-Elyce M. [1 ,2 ]
Fernando, Joseph F. S. [1 ,2 ]
Siriwardena, Dumindu P. [1 ,2 ]
Firestein, Konstantin L. [1 ,2 ]
Zhang, Chao [1 ,2 ]
Golberg, Dmitri, V [1 ,2 ]
机构
[1] Queensland Univ Technol QUT, Fac Sci, Ctr Mat Sci, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol QUT, Fac Sci, Sch Chem & Phys, Brisbane, Qld 4000, Australia
基金
澳大利亚研究理事会;
关键词
electrochemistry; zinc-ion battery; cathode material; vanadium oxide hydrate; green technology; renewable energy sources include solar; wind; hydropower; NONAQUEOUS SOLVENTS; STORAGE; CAPACITY; ENERGY;
D O I
10.1021/acsaem.1c03517
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydration of bilayer vanadium oxides has become the focus of several recent studies toward increasing the interlayer spacing and improving their structural stability, which is favorable for the reversible (de)insertion of Zn2+ ions. However, there is limited understanding on the optimal level of H2O molecules to be incorporated within the vanadium oxide structure. Herein, we investigate the effects of the interlayer H2O content in a vanadium(IV,V) oxide-based cathode material toward the electrochemical performance of a zinc-ion battery (ZIB). A simple solvothermal synthetic route was employed to synthesize carbon-integrated hydrated vanadium oxides with varying H2O contents, CHVO (V5O12middot2.7H2O) and CHVOLW (V5O12middot0.4H2O). CHVO material displays a high capacity of 396 mA h g-1 at a specific current of 250 mA g-1 and an excellent rate capability (187 W h kg-1 at a high-power density of 4.5 kW kg-1). In contrast, CHVO-LW delivers a higher capacity of 582 mA h g-1 at 200 mA g-1 in the initial cycles, however, suffers a rapid capacity decay and cell failure in subsequent cycles. Electrochemical characterizations revealed that structural pillars, such as H2O molecules, can indeed provide significant structural stability, yet too many of them can block intercalation pathways leading to lower capacity. This study shows the importance of adjusting the hydration level to sustain a balance between the high capacity and long-term stability of hydrated vanadium oxide cathode-based ZIBs.
引用
收藏
页码:4159 / 4169
页数:11
相关论文
共 50 条
  • [31] Vanadium nitride oxide quantum dots modified nitrogen-doped graphene as cathode for high-performance aqueous zinc-ion batteries
    Chang, Jiaqi
    Fu, Xiaoping
    Liu, Jiahui
    Li, Caixuan
    Feng, Guodong
    Bao, Fuxi
    Guo, Wen
    JOURNAL OF POWER SOURCES, 2025, 639
  • [32] Ultra-fast activated NH4+-intercalated vanadium oxide cathode for high-performance aqueous zinc-ion batteries
    Xu, Yilong
    Shao, Fei
    Huang, Yongfeng
    Huang, Xudong
    Jiang, Fuyi
    Kang, Feiyu
    Liu, Wenbao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 226 - 235
  • [33] Large-area hydrated vanadium oxide/carbon nanotube composite films for high-performance aqueous zinc-ion batteries
    Hongmei Cao
    Shenzhen Deng
    Zhiwei Tie
    Jinlei Tian
    Lili Liu
    Zhiqiang Niu
    Science China(Chemistry), 2022, (09) : 1725 - 1732
  • [34] Large-area hydrated vanadium oxide/carbon nanotube composite films for high-performance aqueous zinc-ion batteries
    Hongmei Cao
    Shenzhen Deng
    Zhiwei Tie
    Jinlei Tian
    Lili Liu
    Zhiqiang Niu
    Science China Chemistry, 2022, 65 : 1725 - 1732
  • [35] Large-area hydrated vanadium oxide/carbon nanotube composite films for high-performance aqueous zinc-ion batteries
    Cao, Hongmei
    Deng, Shenzhen
    Tie, Zhiwei
    Tian, Jinlei
    Liu, Lili
    Niu, Zhiqiang
    SCIENCE CHINA-CHEMISTRY, 2022, 65 (09) : 1725 - 1732
  • [36] Large-area hydrated vanadium oxide/carbon nanotube composite films for high-performance aqueous zinc-ion batteries
    Hongmei Cao
    Shenzhen Deng
    Zhiwei Tie
    Jinlei Tian
    Lili Liu
    Zhiqiang Niu
    Science China(Chemistry), 2022, 65 (09) : 1725 - 1732
  • [37] Carbon-Doped Vanadium Nitride Used as a Cathode of High-Performance Aqueous Zinc Ion Batteries
    Su, Qingsong
    Rong, Yao
    Chen, Hongzhe
    Wu, Jian
    Yang, Zhanhong
    Deng, Lie
    Fu, Zhimin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (33) : 12155 - 12165
  • [38] Carbon-Doped Vanadium Nitride Used as a Cathode of High-Performance Aqueous Zinc Ion Batteries
    Su, Qingsong
    Rong, Yao
    Chen, Hongzhe
    Wu, Jian
    Yang, Zhanhong
    Deng, Lie
    Fu, Zhimin
    Industrial and Engineering Chemistry Research, 2021, 60 (33): : 12155 - 12165
  • [39] A silver and manganese dioxide composite with oxygen vacancies as a high-performance cathode material for aqueous zinc-ion batteries
    Wang, Yun
    Wang, Tengfei
    Zhang, Wenjing
    Li, Liangjun
    Lv, Xiaoxia
    Wang, Hua
    DALTON TRANSACTIONS, 2024, 53 (12) : 5534 - 5543
  • [40] Layered MnO2@PDA as cathode material toward high-performance aqueous zinc-ion batteries
    Li, Haiyang
    Wang, Menglei
    Lei, Xinyu
    Hu, Boyou
    Zhang, Hanlu
    Xing, Yutong
    Zhang, Meng
    JOURNAL OF ENERGY STORAGE, 2024, 102