Geometric limits of knot complements

被引:9
|
作者
Purcell, Jessica S. [1 ]
Souto, Juan [2 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
HYPERBOLIC; 3-MANIFOLDS; KLEINIAN-GROUPS; MANIFOLDS; CONVERGENCE; BOUNDARIES; CORES;
D O I
10.1112/jtopol/jtq020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any complete hyperbolic 3-manifold with finitely generated fundamental group, with a single topological end, and which embeds into S-3 is the geometric limit of a sequence of hyperbolic knot complements in S-3. In particular, we derive the existence of hyperbolic knot complements that contain balls of arbitrarily large radius. We also show that a complete hyperbolic 3-manifold with two convex cocompact ends cannot be a geometric limit of knot complements in S-3.
引用
收藏
页码:759 / 785
页数:27
相关论文
共 50 条